Micropump based on electroosmosis of the second kind

被引:31
作者
Mishchuk, Nataliya A. [1 ]
Heldal, Trond [2 ]
Volden, Tormod [2 ]
Auerswald, Janko [3 ]
Knapp, Helmut [3 ]
机构
[1] Natl Acad Sci Ukraine, Inst Colloid Chem & Water Chem, UA-142 Kiev, Ukraine
[2] Osmotex AG, Alpnach Dorf, Switzerland
[3] CSEM SA, Alpnach Dorf, Switzerland
关键词
AC and DC; Electroosmosis of the second kind; Microfluidics; Micropump; Polarization; LAMINAR ELECTROKINETIC FLOW; ELECTROPHORESIS; ELECTROCHROMATOGRAPHY; IONTOPHORESIS; SEPARATION; PARTICLE; PROGRESS;
D O I
10.1002/elps.200900271
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A microfluidic pump based on electroosmosis of the second kind was designed and fabricated. Experimental results using DC and AC voltages showed a close to second-order relationship between flow and voltage, in good agreement with theory. The experimental flow rates were considerably lower than the predicted maximum for the micropumps, which can be attributed to the hydrodynamic resistance of the channel network. This also indicates that higher flow velocities are obtainable for modified pump designs.
引用
收藏
页码:3499 / 3506
页数:8
相关论文
共 50 条
[41]   A stand-alone peristaltic micropump based on piezoelectric actuation [J].
Jang, Ling-Sheng ;
Li, Yuan-Jie ;
Lin, Sung-Ju ;
Hsu, Yi-Chu ;
Yao, Wu-Sung ;
Tsai, Mi-Ching ;
Hou, Ching-Cheng .
BIOMEDICAL MICRODEVICES, 2007, 9 (02) :185-194
[42]   UV-LIGA microfabrication and test of an AC-type micropump based on the magnetohydrodynamic (MHD) principle [J].
Heng, KH ;
Wang, WJ ;
Murphy, MC ;
Lian, K .
MICROFLUIDIC DEVICES AND SYSTEMS III, 2000, 4177 :174-184
[43]   Dynamic measurements of a micropump using a fibre optic based interferometer [J].
Davis, C ;
Booth, DJ ;
Harvey, E ;
Cadusch, P ;
Mazzolini, A ;
Askraba, S .
MICRO-OPTO-ELECTRO-MECHANICAL SYSTEMS, 2000, 4075 :101-108
[44]   IoT-Based Reconfigurable Micropump for Drug Delivery Applications [J].
Kotb, Youssef ;
Hegazy, Mariam ;
Abdelrahman, Kareem ;
Nour, Zahwa ;
Al-Jebzi, Mohammed ;
Ibrahim, Omar ;
Gouda, Ahmed ;
Abdel-Mottaleb, Mona ;
Serry, Mohamed .
2021 IEEE SENSORS, 2021,
[45]   Rapid prototyping of a microfluidics-based Venturi micropump imprinted on polymeric, postage stamp sized chips [J].
Curtis, C. ;
Eshaque, B. ;
Badali, K. ;
Karanassios, V. .
ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES IX, 2012, 8366
[46]   An implantable active microport based on a self-priming high-performance two-stage micropump [J].
Geipel, A. ;
Goldschmidtboeing, F. ;
Doll, A. ;
Nadir, S. ;
Jantscheff, P. ;
Esser, N. ;
Massing, U. ;
Woias, P. .
TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,
[47]   An implantable active microport based on a self-priming high-performance two-stage micropump [J].
Geipel, A. ;
Goldschmidtoeing, F. ;
Doll, A. ;
Jantscheff, P. ;
Esser, N. ;
Massing, U. ;
Woias, P. .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 :414-422
[48]   A Novel Thermopneumatic Based Micropump and Microvalve Using Phase Change Liquid [J].
Aravind, T. ;
Kumar, S. Praveen ;
Raj, G. Karman Frances ;
Prasanth, P. ;
Gobinath, P. Sashti .
2013 IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS), 2013, :66-69
[49]   Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle [J].
Rakesh Kumar Haldkar ;
Vijay Kumar Gupta ;
Tanuja Sheorey .
Journal of Mechanical Science and Technology, 2017, 31 :2933-2941
[50]   Characteristic of TiNi(Cu) shape memory thin film based on micropump [J].
Zhang, Huijun ;
Qiu, Chengjun .
SECOND INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, 2009, 7493