Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging

被引:23
|
作者
Schneider, Falk [1 ]
Waithe, Dominic [2 ]
Galiani, Silvia [1 ]
de la Serna, Jorge Bernardino [1 ,3 ]
Sezgin, Erdinc [1 ]
Eggeling, Christian [1 ,2 ,4 ,5 ]
机构
[1] Univ Oxford, MRC Human Immunol Unit, Headley Way, Oxford OX3 9DS, England
[2] Univ Oxford, Wolfson Imaging Ctr, Oxford Weatherall Inst Mol Med, Headley Way, Oxford OX3 9DS, England
[3] Technol Facil Council, Rutherford Appleton Lab Sci, Cent Laser Facil, Res Complex Harwell, Didcot OX11 0FA, Oxon, England
[4] Friedrich Schiller Univ Jena, Inst Appl Opt, Max Wien Pl 4, D-07743 Jena, Germany
[5] Leibniz Inst Photon Technol eV, Albert Einstein Str 9, D-07745 Jena, Germany
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
Diffusion; STED-FCS; scanning FCS; lipids; plasma membrane; simultaneous scanning; FLUORESCENCE CORRELATION SPECTROSCOPY; GPI-ANCHORED PROTEINS; CELL-MEMBRANE ORGANIZATION; PLASMA-MEMBRANE; LATERAL DIFFUSION; PAIR CORRELATION; LIPID RAFTS; STED-FCS; DYNAMICS; CONFINEMENT;
D O I
10.1021/acs.nanolett.8b01190
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
引用
收藏
页码:4233 / 4240
页数:8
相关论文
共 50 条
  • [21] High speed optical nanoscopy by stimulated emission depletion (STED) with galvo mirrors
    Li Shuai
    Kuang Cui-fang
    Wang Yi-fan
    Hao Xiang
    Xiu Peng
    Xu Ying-ke
    Liu Xu
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: MICRO/NANO OPTICAL IMAGING TECHNOLOGIES AND APPLICATIONS, 2013, 8911
  • [22] Analysis on improvement in resolution by excitation beam modulation in stimulated emission depletion nanoscopy
    Geon Lim
    No-Cheol Park
    Wan-Chin Kim
    Optical Review, 2019, 26 : 512 - 521
  • [23] Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope
    Yu JianQiang
    Yuan JingHe
    Zhang XueJie
    Liu JianLi
    Fang XiaoHong
    CHINESE SCIENCE BULLETIN, 2013, 58 (33): : 4045 - 4050
  • [24] Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope
    YU JianQiang
    YUAN JingHe
    ZHANG XueJie
    LIU JianLi
    FANG XiaoHong
    Science Bulletin, 2013, (33) : 4045 - 4050
  • [25] Nanoscale imaging with an integrated system combining stimulated emission depletion microscope and atomic force microscope
    YU JianQiang
    YUAN JingHe
    ZHANG XueJie
    LIU JianLi
    FANG XiaoHong
    Chinese Science Bulletin, 2013, 58 (33) : 4045 - 4050
  • [26] Stimulated scintillation emission depletion Xray imaging
    Alekhin, M. S.
    Patton, G.
    Dujardin, C.
    Douissard, P. -A.
    Lebugle, M.
    Novotny, L.
    Stampanoni, M.
    OPTICS EXPRESS, 2017, 25 (02): : 654 - 669
  • [27] Stimulated emission double depletion nanoscopy with background correction at the single-pixel level
    Sedeh, Amirhossein Barati
    Kobitski, Andrei
    Dai, Siqing
    Eroglu-Kayikci, Sueheyla
    Nienhaus, Karin
    Hilbert, Lennart
    Nienhaus, G. Ulrich
    OPTICS LETTERS, 2023, 48 (21) : 5791 - 5794
  • [28] Far Red-Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy
    Alvelid, Jonatan
    Bucci, Andrea
    Testa, Ilaria
    CHEMPHYSCHEM, 2023, 24 (03)
  • [29] Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins
    Hein, Birka
    Willig, Katrin I.
    Wurm, Christian A.
    Westphal, Volker
    Jakobs, Stefan
    Hell, Stefan W.
    BIOPHYSICAL JOURNAL, 2010, 98 (01) : 158 - 163
  • [30] Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy
    Man, Zhongwei
    Lv, Zheng
    Xu, Zhenzhen
    Cui, Hongtu
    Liao, Qing
    Zheng, Lemin
    Jin, Xue
    He, Qihua
    Fu, Hongbing
    NANOSCALE, 2019, 11 (27) : 12990 - 12996