A Stacking Ensemble Deep Learning Model for Bitcoin Price Prediction Using Twitter Comments on Bitcoin

被引:33
|
作者
Ye, Zi [1 ]
Wu, Yinxu [1 ]
Chen, Hui [1 ]
Pan, Yi [1 ]
Jiang, Qingshan [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
关键词
cryptocurrencies; forecasting model; financial technology; ensemble learning; Bitcoin price prediction; NEURAL-NETWORKS;
D O I
10.3390/math10081307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cryptocurrencies can be considered as mathematical money. As the most famous cryptocurrency, the Bitcoin price forecasting model is one of the popular mathematical models in financial technology because of its large price fluctuations and complexity. This paper proposes a novel ensemble deep learning model to predict Bitcoin's next 30 min prices by using price data, technical indicators and sentiment indexes, which integrates two kinds of neural networks, long short-term memory (LSTM) and gate recurrent unit (GRU), with stacking ensemble technique to improve the accuracy of decision. Because of the real-time updates of comments on social media, this paper uses social media texts instead of news websites as the source data of public opinion. It is processed by linguistic statistical method to form the sentiment indexes. Meanwhile, as a financial market forecasting model, the model selects the technical indicators as input as well. Real data from September 2017 to January 2021 is used to train and evaluate the model. The experimental results show that the near-real time prediction has a better performance, with a mean absolute error (MAE) 88.74% better than the daily prediction. The purpose of this work is to explain our solution and show that the ensemble method has better performance and can better help investors in making the right investment decision than other traditional models.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bitcoin price prediction using Deep Learning Algorithm
    Rizwan, Muhammad
    Narejo, Sanam
    Javed, Moazzam
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [2] A Comparative Study of Bitcoin Price Prediction Using Deep Learning
    Ji, Suhwan
    Kim, Jongmin
    Im, Hyeonseung
    MATHEMATICS, 2019, 7 (10)
  • [3] Automated Bitcoin Trading dApp Using Price Prediction from a Deep Learning Model
    Lua, Zhi Zhan
    Seow, Chee Kiat
    Chan, Raymond Ching Bon
    Cai, Yiyu
    Cao, Qi
    RISKS, 2025, 13 (01)
  • [4] Forecasting the price of Bitcoin using deep learning
    Liu, Mingxi
    Li, Guowen
    Li, Jianping
    Zhu, Xiaoqian
    Yao, Yinhong
    FINANCE RESEARCH LETTERS, 2021, 40
  • [5] Bitcoin Price Prediction using Machine Learning
    Velankar, Siddhi
    Valecha, Sakshi
    Maji, Shreya
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 144 - 147
  • [6] Twitter Attribute Classification With Q-Learning on Bitcoin Price Prediction
    Otabek, Sattarov
    Choi, Jaeyoung
    IEEE ACCESS, 2022, 10 : 96136 - 96148
  • [7] A Mechanism for Bitcoin Price Forecasting using Deep Learning
    Ateeq, Karamath
    Al Zarooni, Ahmed Abdelrahim
    Rehman, Abdur
    Khan, Muhammd Adna
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 441 - 448
  • [8] Analysis of Bitcoin Price Prediction Using Machine Learning
    Chen, Junwei
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2023, 16 (01)
  • [9] A Deep Learning Framework for Hourly Bitcoin Price Prediction Using Bi-LSTM and Sentiment Analysis of Twitter Data
    Raj Patel
    Jaya Chauhan
    Naveen Kumar Tiwari
    Vipin Upaddhyay
    Abhishek Bajpai
    SN Computer Science, 5 (6)
  • [10] A hybrid deep learning model for Bitcoin price prediction: data decomposition and feature selection
    Wang, Jikai
    Feng, Kai
    Qiao, Gaoxiu
    APPLIED ECONOMICS, 2024, 56 (53) : 6890 - 6905