RIANet: Road Graph and Image Attention Network for Urban Autonomous Driving

被引:1
|
作者
Ha, Timothy [1 ,2 ]
Oh, Jeongwoo [1 ,2 ]
Chung, Hojun [1 ,2 ]
Lee, Gunmin [1 ,2 ]
Oh, Songhwai [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, ASRI, Seoul 08826, South Korea
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
关键词
D O I
10.1109/IROS47612.2022.9982184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel autonomous driving framework, called a road graph and image attention network (RIANet), which computes the attention scores of objects in the image using the road graph feature. The process of the proposed method is as follows: First, the feature encoder module encodes the road graph, image, and additional features of the scene. The attention network module then incorporates the encoded features and computes the scene context feature via the attention mechanism. Finally, the low-level controller module drives the ego-vehicle based on the scene context feature. In the experiments, we use an urban scene driving simulator named CARLA to train and test the proposed method. The results show that the proposed method outperforms existing autonomous driving methods.
引用
收藏
页码:4805 / 4810
页数:6
相关论文
共 50 条
  • [41] Graph Attention Convolutional Network: Spatiotemporal Modeling for Urban Traffic Prediction
    Song, Qingyu
    Ming, RuiBo
    Hu, Jianming
    Niu, Haoyi
    Gao, Mingyang
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [42] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [43] Cross Attention Graph Matching Network for Image-Text Retrieval
    Yang, Xiaoyu
    Xie, Hao
    Mao, Junyi
    Wang, Zhiguo
    Yin, Guangqiang
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 274 - 286
  • [44] Graph Attention Transformer Network for Multi-label Image Classification
    Yuan, Jin
    Chen, Shikai
    Zhang, Yao
    Shi, Zhongchao
    Geng, Xin
    Fan, Jianping
    Rui, Yong
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (04)
  • [45] Graph Sample and Aggregate-Attention Network for Hyperspectral Image Classification
    Ding, Yao
    Zhao, Xiaofeng
    Zhang, Zhili
    Cai, Wei
    Yang, Nengjun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [46] HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network
    Kong, Yi
    Ji, Dingzhe
    Cheng, Yuhu
    Wang, Xuesong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (04) : 1426 - 1434
  • [47] Multilabel Aerial Image Classification With a Concept Attention Graph Neural Network
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [49] Fostering the Autonomous Driving in Urban Mobility Operation (Passengers and Goods) - INTEGRA Network
    Ferraz, Sergio Guerri
    Monteagudo, Mireia Calvo
    SMART ENERGY FOR SMART TRANSPORT, CSUM2022, 2023, : 622 - 630
  • [50] SAT-GCN: Self-attention graph convolutional network-based 3D object detection for autonomous driving
    Wang, Li
    Song, Ziying
    Zhang, Xinyu
    Wang, Chenfei
    Zhang, Guoxin
    Zhu, Lei
    Li, Jun
    Liu, Huaping
    KNOWLEDGE-BASED SYSTEMS, 2023, 259