Impact-Induced Porosity and Microfracturing at the Chicxulub Impact Structure

被引:29
|
作者
Rae, Auriol S. P. [1 ,2 ]
Collins, Gareth S. [1 ]
Morgan, Joanna, V [1 ]
Salge, Tobias [3 ]
Christeson, Gail L. [4 ,5 ]
Leung, Jody [1 ]
Lofi, Johanna [6 ]
Gulick, Sean P. S. [4 ,5 ]
Poelchau, Michael [2 ]
Rillee, Ulrich [7 ]
Gebhardt, Catalina [8 ]
Grieve, Richard A. F. [9 ]
Osinski, Gordon R. [9 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London, England
[2] Albert Ludwigs Univ Freiburg, Inst Geo & Umweltnat Wissensch, Freiburg, Germany
[3] Nat Hist Museum, Imaging & Anal Ctr, London, England
[4] Univ Texas Austin, Jackson Sch Geosci, Inst Geophys, Austin, TX 78712 USA
[5] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA
[6] Univ Montpellier, Geosci Montpellier, Montpellier, France
[7] Univ Hamburg, Inst Geol, Hamburg, Germany
[8] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[9] Western Univ, Ctr Planetary Sci & Explorat, Dept Earth Sci, London, ON, Canada
关键词
cratering; porosity; Chicxulub; fractures; PEAK-RING FORMATION; HYDROCODE SIMULATIONS; CRUSTAL STRUCTURE; CRATER; GRAVITY; YUCATAN; SIZE; DEFORMATION; ASYMMETRY; ORIGIN;
D O I
10.1029/2019JE005929
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Porosity and its distribution in impact craters has an important effect on the petrophysical properties of impactites: seismic wave speeds and reflectivity, rock permeability, strength, and density. These properties are important for the identification of potential craters and the understanding of the process and consequences of cratering. The Chicxulub impact structure, recently drilled by the joint International Ocean Discovery Program and International Continental scientific Drilling Program Expedition 364, provides a unique opportunity to compare direct observations of impactites with geophysical observations and models. Here, we combine small-scale petrographic and petrophysical measurements with larger-scale geophysical measurements and numerical simulations of the Chicxulub impact structure. Our aim is to assess the cause of unusually high porosities within the Chicxulub peak ring and the capability of numerical impact simulations to predict the gravity signature and the distribution and texture of porosity within craters. We show that high porosities within the Chicxulub peak ring are primarily caused by shock-induced microfracturing. These fractures have preferred orientations, which can be predicted by considering the orientations of principal stresses during shock, and subsequent deformation during peak ring formation. Our results demonstrate that numerical impact simulations, implementing the Dynamic Collapse Model of peak ring formation, can accurately predict the distribution and orientation of impact-induced microfractures in large craters, which plays an important role in the geophysical signature of impact structures.
引用
收藏
页码:1960 / 1978
页数:19
相关论文
共 50 条
  • [21] Shocked titanite records Chicxulub hydrothermal alteration and impact age
    Timms, Nicholas E.
    Kirkland, Christopher L.
    Cavosie, Aaron J.
    Rae, Auriol S. P.
    Rickard, William D. A.
    Evans, Noreen J.
    Erickson, Timmons M.
    Wittmann, Axel
    Ferriere, Ludovic
    Collins, Gareth S.
    Gulick, Sean P. S.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2020, 281 : 12 - 30
  • [22] Borehole Seismic Observations From the Chicxulub Impact Drilling: Implications for Seismic Reflectivity and Impact Damage
    Nixon, C. G.
    Schmitt, D. R.
    Kofman, R.
    Lofi, J.
    Gulick, S. P. S.
    Saustrup, S.
    Christeson, G. L.
    Kring, D. A.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2022, 23 (03)
  • [23] Evidence for an impact-induced biosphere from the δ34S signature of sulphides in the Rochechouart impact structure, France
    Simpson, S. L.
    Boyce, A. J.
    Lambert, P.
    Lindgren, P.
    Lee, M. R.
    EARTH AND PLANETARY SCIENCE LETTERS, 2017, 460 : 192 - 200
  • [24] Chicxulub Crater Joint Gravity and Magnetic Anomaly Analysis: Structure, Asymmetries, Impact Trajectory and Target Structures
    Urrutia-Fucugauchi, Jaime
    Arellano-Catalan, Oscar
    Perez-Cruz, Ligia
    Romero-Galindo, Irving A.
    PURE AND APPLIED GEOPHYSICS, 2022, 179 (08) : 2735 - 2756
  • [25] Hidden secrets of deformation: Impact-induced compaction within a CV chondrite
    Forman, L. V.
    Bland, P. A.
    Timms, N. E.
    Collins, G. S.
    Davison, T. M.
    Ciesla, F. J.
    Benedix, G. K.
    Daly, L.
    Trimby, P. W.
    Yang, L.
    Ringer, S. P.
    EARTH AND PLANETARY SCIENCE LETTERS, 2016, 452 : 133 - 145
  • [26] Full waveform tomographic images of the peak ring at the Chicxulub impact crater
    Morgan, J. V.
    Warner, M. R.
    Collins, G. S.
    Grieve, R. A. F.
    Christeson, G. L.
    Gulick, S. P. S.
    Barton, P. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2011, 116
  • [27] Mechanical Characterization of Impact-Induced Dynamically Recrystallized Nanophase
    Rittel, D.
    Zhang, L. H.
    Osovski, S.
    PHYSICAL REVIEW APPLIED, 2017, 7 (04):
  • [28] Fungal colonization of an Ordovician impact-induced hydrothermal system
    Ivarsson, Magnus
    Broman, Curt
    Sturkell, Erik
    Ormo, Jens
    Siljestrom, Sandra
    van Zuilen, Mark
    Bengtson, Stefan
    SCIENTIFIC REPORTS, 2013, 3
  • [29] Scaling laws for the geometry of an impact-induced magma ocean
    Nakajima, Miki
    Golabek, Gregor J.
    Wuennemann, Kai
    Rubie, David C.
    Burger, Christoph
    Melosh, Henry J.
    Jacobson, Seth A.
    Manske, Lukas
    Hull, Scott D.
    EARTH AND PLANETARY SCIENCE LETTERS, 2021, 568
  • [30] Chicxulub-like Gale impact into an ocean/land interface on Mars: An explanation for the formation of Mount Sharp
    Dohm, James M.
    Fink, Wolfgang
    Williams, Jean-Pierre
    Mahaney, William C.
    Ferris, Justin C.
    ICARUS, 2023, 390