Promotional role of Li4Ti5O12 as Li+ conductor and structural stabilizer on Sn@C anode cyclability

被引:6
|
作者
Zeng, Tianbiao [1 ]
Hu, Xuebu [1 ]
Ji, Penghui [1 ]
Shang, Biao [1 ]
Peng, Qimeng [1 ]
机构
[1] Chongqing Univ Technol, Coll Chem & Chem Engn, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Sn; Li4Ti5O12; Li+ conductor; Structural stabilizer; Anode; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; CARBON SPHERES; HIGH-CAPACITY; COMPOSITE; NANOPARTICLES; NANOSPHERES; STORAGE;
D O I
10.1016/j.jallcom.2017.03.364
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-Sn confined to matrixes for fabricating high capacity and long cycle life anodes has attracted extensive attention in recent years, but using Li+ conductor as structure stabilizer to construct matrixes have not been studied yet. Sn-based anodes using spinel Li4Ti5O12 as Li+ conductor and structure stabilizer can prolong the cycle life of electrodes, which is due to "zero strain" property and high Li+ conductivity coefficient of Li4Ti5O12. Herein, spherical (nano-Sn/Li4Ti5O12)@C was designed, synthesized and investigated, which was labeled as (n-Sn/L)@C. Nano-Sn and nano-Li4Ti5O12 pieces were mixed uniformly in inner carbon shell, where some vacuum space was beneficial for Sn expanding/shrinking during Li+ insertion/extraction. Moreover, Li+ diffusion coefficient of (n-Sn/L)@C-1 and (n-Sn/Q@C-2 was high as 6.09 x 10(-8) and 9.47 x 10(-9) cm(2) s(-1), whereas the value of Sn@C was 7.54 x 10(-10) cm(2) The charge capacity (corresponding to the reversible capacity on full cell) loss of per cycle of (n-Sn/L)@C-1 and (n-Sn/L)@C-2 from 1st to 350th cycle was only 0.081% and 0.094% at 500 mA g(-1), while the value of Sn@C was 0.160%. The enhanced electrochemical performances of (n-Sn/L)@C benefited from intimate contact of nano-Li4Ti5O12 and nano-Sn within the carbon shell, and high Li+ conductivity of Li4Ti5O12. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 50 条
  • [1] Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode
    Zeng, Tianbiao
    Hu, Xuebu
    Ji, Penghui
    Shang, Biao
    Peng, Qimeng
    Zhang, Yaoyao
    Song, Ruiqiang
    JOURNAL OF POWER SOURCES, 2017, 359 : 250 - 261
  • [2] Li4Ti5O12 Coating Layer as Li+ Conductor and Cycle Stabilizer for SnO2 Anode
    Gong Shiding
    Zhang Yaoyao
    Sun Fang
    Zeng Tianbiao
    Hu Xuebu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (10): : 9896 - 9906
  • [3] OPTIMIZING THE PERFORMANCE OF MICROCOMPOSITES Li4Ti5O12/Sn WITH Sn AND Li4Ti5O12/Sn@C ANODE AND ACTIVATED CARBON CONTENT VARIABLES FOR LITHIUM-ION BATTERIES
    Priyono, Bambang
    Syahrial, Anne Zulfia
    Nugraha, Mohammad Ridho
    Sepala, Dian
    Faizah
    Subhan, Achmad
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2019, 10 (05) : 1010 - 1023
  • [4] Sn Embedded Li4Ti5O12/C Composite as a High Capacity Anode Material for Li-ion Battery
    Zeng, Tianbiao
    Hu, Xuebu
    Ji, Penghui
    Peng, Qimeng
    Shang, Biao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (12): : 10199 - 10209
  • [5] Electrochemical Properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag Nanomaterials
    Stenina, I. A.
    Sobolev, A. N.
    Kuz'mina, A. A.
    Kulova, T. L.
    Skundin, A. M.
    Tabachkova, N. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2017, 53 (10) : 1039 - 1045
  • [6] Progress of Li4Ti5O12 anode material for lithium ion batteries
    Lin, X.
    Pan, F.
    Wang, H.
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A82 - A87
  • [7] Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries
    Zhang, Hao
    Yang, Yang
    Xu, Hong
    Wang, Li
    Lu, Xia
    He, Xiangming
    INFOMAT, 2022, 4 (04)
  • [8] Scalable in Situ Synthesis of Li4Ti5O12/Carbon Nanohybrid with Supersmall Li4Ti5O12 Nanoparticles Homogeneously Embedded in Carbon Matrix
    Zheng, Luyao
    Wang, Xiaoyan
    Xia, Yonggao
    Xia, Senlin
    Metwalli, Ezzeldin
    Qiu, Bao
    Ji, Qing
    Yin, Shanshan
    Xie, Shuang
    Fang, Kai
    Liang, Suzhe
    Wang, Meimei
    Zuo, Xiuxia
    Xiao, Ying
    Liu, Zhaoping
    Zhu, Jin
    Mueller-Buschbaum, Peter
    Cheng, Ya-Jun
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) : 2591 - 2602
  • [9] High-rate Li4Ti5O12/C composites as anode for lithium-ion batteries
    Zheng, Xiao-Dong
    Dong, Chen-Chu
    Huang, Bing
    Lu, Mi
    IONICS, 2013, 19 (03) : 385 - 389
  • [10] Carbon Coating with Oleic Acid on Li4Ti5O12
    Gu, Fang
    Chen, Gang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (07): : 6168 - 6179