Numerical solution of the parabolic multicomponent convection-diffusion mass transfer equations by a splitting method

被引:3
|
作者
Juncu, Gheorghe [1 ]
Nicola, Aurelian [2 ]
Popa, Constantin [2 ]
Stroila, Elena [3 ]
机构
[1] Univ Politehn Bucuresti, Dept Chem & Biochem Engn, Polizu 1, Bucharest 011061, Romania
[2] Ovidius Univ, Dept Math, Constanta, Romania
[3] Res Ctr Navy, Dept Naval Platforms & Phys Fields, Constanta, Romania
关键词
PRECONDITIONED CONJUGATE-GRADIENT; FINITE-VOLUME METHOD; CIRCULATING DROPS; MULTIGRID METHODS; SIMULATION;
D O I
10.1080/10407782.2016.1257287
中图分类号
O414.1 [热力学];
学科分类号
摘要
The splitting method used in a previous study for the numerical solution of mass transfer equations in ternary systems is generalized to mixtures with n-components. The diffusion coefficients are considered constant. Theoretical results about the stability of the method are presented, as well as numerical simulations for mixtures with n = 4, 5, and 6. The numerical experiments confirmed the theoretical results and show good numerical performances. Moreover, multicomponent diffusion effects without an imposed concentration gradient are investigated for mixtures with n = 4, 5, and 6 components.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [31] Relaxation method for unsteady convection-diffusion equations
    Shen, Wensheng
    Zhang, Changjiang
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 908 - 920
  • [32] LANCZOS AND ARNOLDI METHODS FOR THE SOLUTION OF CONVECTION-DIFFUSION EQUATIONS
    NOUROMID, B
    DUNBAR, WS
    WOODBURY, AD
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 88 (01) : 75 - 95
  • [33] On the numerical approximations of stiff convection-diffusion equations in a circle
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    NUMERISCHE MATHEMATIK, 2014, 127 (02) : 291 - 313
  • [34] NUMERICAL INVERSE LAPLACE TRANSFORM FOR CONVECTION-DIFFUSION EQUATIONS
    Guglielmi, Nicola
    Lopez-Fernandez, Maria
    Nino, Giancarlo
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1161 - 1191
  • [35] A numerical method for two-dimensional transient nonlinear convection-diffusion equations
    Meng, Xiangyuan
    Huang, Mei
    Wang, Boxue
    Ouyang, Xiaoping
    Huang, Yanping
    Chen, Denggao
    Cheng, Yanting
    Li, Yaodi
    ANNALS OF NUCLEAR ENERGY, 2024, 205
  • [36] A SPLITTING ALGORITHM FOR A CONVECTION-DIFFUSION EQUATION BASED ON COMBINING A PARTICLE METHOD WITH AN EXPLICIT SOLUTION
    COTTET, GH
    GALLIC, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (02): : 133 - 136
  • [37] A weighted mass explicit scheme for convection-diffusion equations
    Ruas, Vitoriano
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 505 - 522
  • [38] Solution of convection-diffusion equation by the method of characteristics
    Banas, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) : 31 - 39
  • [39] Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets
    Irandoust-pakchin, Safar
    Dehghan, Mehdi
    Abdi-mazraeh, Somayeh
    Lakestani, Mehrdad
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (06) : 913 - 924
  • [40] Numerical solution of the convection-diffusion equation with small viscosity
    Agoshkov, VI
    Buleev, SN
    DIFFERENTIAL EQUATIONS, 1996, 32 (12) : 1663 - 1670