Numerical solution of the parabolic multicomponent convection-diffusion mass transfer equations by a splitting method

被引:3
|
作者
Juncu, Gheorghe [1 ]
Nicola, Aurelian [2 ]
Popa, Constantin [2 ]
Stroila, Elena [3 ]
机构
[1] Univ Politehn Bucuresti, Dept Chem & Biochem Engn, Polizu 1, Bucharest 011061, Romania
[2] Ovidius Univ, Dept Math, Constanta, Romania
[3] Res Ctr Navy, Dept Naval Platforms & Phys Fields, Constanta, Romania
关键词
PRECONDITIONED CONJUGATE-GRADIENT; FINITE-VOLUME METHOD; CIRCULATING DROPS; MULTIGRID METHODS; SIMULATION;
D O I
10.1080/10407782.2016.1257287
中图分类号
O414.1 [热力学];
学科分类号
摘要
The splitting method used in a previous study for the numerical solution of mass transfer equations in ternary systems is generalized to mixtures with n-components. The diffusion coefficients are considered constant. Theoretical results about the stability of the method are presented, as well as numerical simulations for mixtures with n = 4, 5, and 6. The numerical experiments confirmed the theoretical results and show good numerical performances. Moreover, multicomponent diffusion effects without an imposed concentration gradient are investigated for mixtures with n = 4, 5, and 6 components.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [21] On the stable solution of transient convection-diffusion equations
    Bayramov, N. R.
    Kraus, J. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 275 - 293
  • [22] NUMERICAL APPROXIMATION OF SOLUTION DERIVATIVES OF SINGULARLY PERTURBED PARABOLIC PROBLEMS OF CONVECTION-DIFFUSION TYPE
    Gracia, J. L.
    O'Riordan, E.
    MATHEMATICS OF COMPUTATION, 2016, 85 (298) : 581 - 599
  • [23] APPROXIMATE SOLUTION OF CONVECTION-DIFFUSION EQUATIONS USING A HAAR WAVELET METHOD
    Singh, Inderdeep
    Kumar, Sheo
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 143 - 154
  • [24] Mass conservative characteristic finite difference method for convection-diffusion equations
    Zhou, Zhongguo
    Hang, Tongtong
    Jiang, Tengfei
    Zhang, Qi
    Tang, Huiguo
    Chen, Xiangdong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (10) : 2115 - 2136
  • [25] Chebyshev pseudospectral method for computing numerical solution of convection-diffusion equation
    Bazan, F. S. V.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 537 - 546
  • [26] A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection-diffusion equations
    Ferrero, A.
    Larocca, F.
    Puppo, G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (02) : 63 - 91
  • [27] Numerical Solution of the Steady Convection-Diffusion Equation with Dominant Convection
    Krukier, L. A.
    Pichugina, O. A.
    Krukier, B. L.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2095 - 2100
  • [28] THE NUMERICAL TREATMENT OF NONLINEAR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS GOVERNING CONVECTION-DIFFUSION PROCESSES
    ELGENDI, SE
    IBRAHIM, MAK
    SHAMARDAN, AB
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1988, 25 (02) : 111 - 127
  • [29] A Finite Element Splitting Method for a Convection-Diffusion Problem
    Thomee, Vidar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 717 - 725
  • [30] A New Method for Solving Convection-Diffusion Equations
    Liao, Wenyuan
    Zhu, Jianping
    CSE 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, : 107 - +