Mildly relativistic collisionless shock formed by magnetic piston

被引:2
作者
Moreno, Q. [1 ]
Araudo, A. [1 ,2 ]
Korneev, Ph. [3 ,4 ]
Li, C. K. [5 ]
Tikhonchuk, V. T. [1 ,6 ]
Ribeyre, X. [6 ]
d'Humieres, E. [6 ]
Weber, S. [1 ,7 ]
机构
[1] Czech Acad Sci, Inst Phys, ELI Beamlines, Dolni Brezany 25241, Czech Republic
[2] Czech Acad Sci, Astron Inst, Prague 14100, Czech Republic
[3] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[4] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[5] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Univ Bordeaux, CNRS, Ctr Lasers Intenses & Applicat, CEA, F-33405 Talence, France
[7] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
关键词
PARTICLE-ACCELERATION; SIMULATIONS; GENERATION; PLASMA;
D O I
10.1063/1.5144683
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By using particle-in-cell simulations, we study the collision of two plasma flows with one of them carrying a magnetic field. Ion interpenetration results in the formation of a magnetic piston with the magnetic field compression proportional to the density ratio of the colliding plasmas. The counterpropagating ions in the nonmagnetized plasma upstream from the piston excite the ion Weibel instability, which turns into magnetic turbulence. The thickness of the piston increases with time, and it turns into a reverse magnetized shock after less than one ion gyro period. In front of the piston, the time needed to decrease the nonmagnetized ion anisotropy using the magnetic turbulence is much larger than the ion gyroperiod in the piston. Consequently, particles are reflected by the piston, which acts as a wall initiating a transient phase. After several ion periods, the formation of this electromagnetic forward shock is, then, accelerated by the piston, and at large timescale, the dissipation of energy is eventually mediated only by the Weibel turbulence. We report here a new configuration of shocks, where a reverse magnetized and a forward electromagnetic shock coexist separated by a tangential discontinuity. Particle acceleration and heating in the two shock structures and relevance of this scenario of collisionless shock formation to laboratory experiments and astrophysical conditions are discussed.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] Contemporary particle-in-cell approach to laser-plasma modelling
    Arber, T. D.
    Bennett, K.
    Brady, C. S.
    Lawrence-Douglas, A.
    Ramsay, M. G.
    Sircombe, N. J.
    Gillies, P.
    Evans, R. G.
    Schmitz, H.
    Bell, A. R.
    Ridgers, C. P.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (11)
  • [2] Observation of the terrestrial bow shock in quasi-electrostatic subshock regime
    Balikhin, MA
    Nozdrachev, M
    Dunlop, M
    Krasnosel'skikh, V
    Walker, SN
    Alleyne, HSK
    Formisano, V
    Andre, M
    Balogh, A
    Eriksson, A
    Yearby, K
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A8)
  • [3] ACCELERATION OF COSMIC-RAYS IN SHOCK FRONTS .1.
    BELL, AR
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 182 (01) : 147 - 156
  • [4] Birdsall C. K., 2004, SERIES PLASMA PHYS F
  • [5] PARTICLE ACCELERATION BY ASTROPHYSICAL SHOCKS
    BLANDFORD, RD
    OSTRIKER, JP
    [J]. ASTROPHYSICAL JOURNAL, 1978, 221 (01) : L29 - L32
  • [6] The role of electron heating in electromagnetic collisionless shock formation
    Bochkarev, S. G.
    d'Humieres, E.
    Korneev, Ph.
    Bychenkov, V. Yu.
    Tikhonchuk, V.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2015, 17 : 175 - 182
  • [7] How large can the electron to proton mass ratio be in particle-in-cell simulations of unstable systems?
    Bret, A.
    Dieckmann, M. E.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (03)
  • [8] Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks
    Bykov, A. M.
    Treumann, R. A.
    [J]. ASTRONOMY AND ASTROPHYSICS REVIEW, 2011, 19
  • [9] NONLINEAR DEVELOPMENT OF ELECTROMAGNETIC INSTABILITIES IN ANISOTROPIC PLASMAS
    DAVIDSON, RC
    WAGNER, CE
    HAMMER, DA
    HABER, I
    [J]. PHYSICS OF FLUIDS, 1972, 15 (02) : 317 - &
  • [10] Structure of a collisionless pair jet in a magnetized electron-proton plasma: flow-aligned magnetic field
    Dieckmann, M. E.
    Folini, D.
    Hotz, I.
    Nordman, A.
    Dell'Acqua, P.
    Ynnerman, A.
    Walder, R.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 621