Facial expression recognition method based on deep convolutional neural network combined with improved LBP features

被引:29
作者
Kong, Fanzhi [1 ]
机构
[1] Commun Univ Zhejiang, Sch Elect & Informat, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Facial expression recognition; Machine learning; Deep convolutional neural network; Local binary mode (LBP);
D O I
10.1007/s00779-019-01238-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the disadvantages of the traditional machine-based facial expression recognition method that eliminates the feature of manual selection, a feature extraction method based on deep convolutional neural network to learn expression features is proposed. Since the deep convolutional neural network can directly use the original image as the input image, the image abstract feature interpretation is obtained at the fully connected layer of the image, which avoids the inherent error of image preprocessing and artificial selection features. Then, we reconstruct the traditional local binary pattern (LBP) feature operator for facial expression image and fuse the abstract facial expression features learned by the deep convolution neural network with the modified LBP facial expression texture features in the full connection layer. A new facial expression feature can be obtained, and the classification accuracy can be improved. In general, for the recognition of facial expression images, the proposed method based on the fusion LBP expression features and convolutional neural network expression features is used to obtain the best performance of 91.28% in the comparative experiment. An efficient extension of the expression feature texture expression channel is carried out. On the other hand, convolutional neural networks have incomparable advantages over other methods in abstract information representation of two-dimensional images.
引用
收藏
页码:531 / 539
页数:9
相关论文
共 50 条
  • [21] A Facial Expression Recognition Method Using Deep Convolutional Neural Networks Based on Edge Computing
    Chen, An
    Xing, Hang
    Wang, Feiyu
    IEEE ACCESS, 2020, 8 : 49741 - 49751
  • [22] Face Expression Recognition Based on Improved Convolutional Neural Network
    Liu, Quanming
    Zhang, Jing
    Xin, Yangyang
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR 2019), 2019, : 61 - 65
  • [23] Advertisement System Based on Facial Expression Recognition and Convolutional Neural Network
    Truong Quang Vinh
    Phan Tran Dac Thinh
    ISCIT 2019: PROCEEDINGS OF 2019 19TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2019, : 476 - 480
  • [24] Facial Expression Recognition Based on Random Forest and Convolutional Neural Network
    Wang, Yingying
    Li, Yibin
    Song, Yong
    Rong, Xuewen
    INFORMATION, 2019, 10 (12)
  • [25] FACIAL EXPRESSION RECOGNITION BASED ON FUSION OF GABOR AND LBP FEATURES
    Zhao, Quan-You
    Pan, Bao-Chang
    Pan, Jian-Jia
    Tang, Yuan-Yan
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 362 - +
  • [26] Facial Expression Recognition Using Convolutional Neural Network
    Agrawal, Ved
    Bamb, Chirag
    Mata, Harsh
    Dhunde, Harshal
    Hablani, Ramchand
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 267 - 278
  • [27] Facial Expression Recognition Using Convolutional Neural Network
    Gan, Yijun
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2018), 2018,
  • [28] A Novel Convolutional Neural Network for Facial Expression Recognition
    Li, Jing
    Mi, Yang
    Yu, Jiahui
    Ju, Zhaojie
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II, 2019, 1006 : 310 - 320
  • [29] A Facial Expression Recognition Method Based on a Multibranch Cross-Connection Convolutional Neural Network
    Shi, Cuiping
    Tan, Cong
    Wang, Liguo
    IEEE ACCESS, 2021, 9 : 39255 - 39274
  • [30] Real-Time Facial Expression Recognition Using Deep Convolutional Neural Network
    Zeng, Yuwen
    Xiao, Nan
    Wang, Kaidi
    Yuan, Hang
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1536 - 1541