The dynamical law of Ginzburg-Landau vortices with a pinning effect

被引:11
作者
Jian, HY [1 ]
机构
[1] Tsing Hua Univ, Dept Appl Math, Beijing 10084, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamical behavior; Ginzburg-Landau equation; vortex pinning;
D O I
10.1016/S0893-9659(99)00215-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we study the asymptotic behaviour of an ODE system which describes the vortex dynamics of the complex Ginzburt-Landau equations. We prove that ail the vortices are pinned together to the critical points of the pinning function. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:91 / 94
页数:4
相关论文
共 8 条
[1]   Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part I [J].
Andre, N ;
Shafrir, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (01) :45-73
[2]   A MODEL FOR SUPERCONDUCTING THIN-FILMS HAVING VARIABLE THICKNESS [J].
DU, Q ;
GUNZBURGER, MD .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 69 (3-4) :215-231
[3]  
Lin FH, 1998, COMMUN PUR APPL MATH, V51, P385, DOI 10.1002/(SICI)1097-0312(199804)51:4<385::AID-CPA3>3.0.CO
[4]  
2-5
[5]  
LOJASIEWICZ S, 1963, C INT CNRS, V177
[7]  
ZHANG ZF, 1997, STABILITY THEORY DIF
[8]  
[No title captured]