Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 mu m, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this scheme is approximately half of the original oceanic deposition obtained using the default scheme, and it corresponds to a 10% decrease in the original estimate of the total global ozone deposition. The previously reported modelled estimate of oceanic deposition is roughly one-third of total deposition and with this new parameterisation it is reduced to 12% of the modelled total global ozone deposition. Deposition parameterisation influences the predicted atmospheric ozone mixing ratios, especially in the Southern Hemisphere. For the latitudes 45-70 degrees S, the two-layer scheme improves the prediction of ozone observed at an altitude of 1 km by 7% and that within the altitude range 1-6 km by 5% compared to the default scheme.
机构:
Chonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South KoreaChonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South Korea
Moon, Byung-Kwon
Yeh, Sang-Wook
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Dept Marine Sci & Convergent Technol, Gyeonggi 426792, South KoreaChonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South Korea
Yeh, Sang-Wook
Parka, Rokjin J.
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South KoreaChonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South Korea
Parka, Rokjin J.
Song, Chang-Keun
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Environm Res, Climate Change Res Div, Incheon 404708, South KoreaChonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South Korea
Song, Chang-Keun
Youn, Daeok
论文数: 0引用数: 0
h-index: 0
机构:
Chungbuk Natl Univ, Dept Sci Educ, Chungbuk 361763, South KoreaChonbuk Natl Univ, Inst Fus Sci, Div Sci Educ, Jeonju 561756, South Korea
Youn, Daeok
JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY,
2013,
34
(07):
: 662
-
668
机构:
Met Off Hadley Ctr, Exeter, Devon, EnglandUniv Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
O'Connor, Fiona M.
Turnock, Steven T.
论文数: 0引用数: 0
h-index: 0
机构:
Met Off Hadley Ctr, Exeter, Devon, England
Univ Leeds, Sch Earth & Environm, Strateg Res Grp, Met Off, Leeds, W Yorkshire, EnglandUniv Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland