GLOBAL RESULTS FOR EIKONAL HAMILTON-JACOBI EQUATIONS ON NETWORKS

被引:7
作者
Siconolfi, Antonio [1 ]
Sorrentino, Alfonso [2 ]
机构
[1] Sapienza Univ Roma, Dept Math, Rome, Italy
[2] Univ Roma Tor Vergata, Dept Math, Rome, Italy
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Hamilton-Jacobi equation; embedded networks; graphs; viscosity solutions; viscosity subsolutions; comparison principle; discrete functional equation on graphs; Hopf-Lax formula; discrete weak KAM theory; VISCOSITY SOLUTION; BELLMAN APPROACH; MATHER THEORY; R-N; MANIFOLDS;
D O I
10.2140/apde.2018.11.171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a one-parameter family of eikonal Hamilton-Jacobi equations on an embedded network, and prove that there exists a unique critical value for which the corresponding equation admits global solutions, in a suitable viscosity sense. Such a solution is identified, via a Hopf-Lax-type formula, once an admissible trace is assigned on an intrinsic boundary. The salient point of our method is to associate to the network an abstract graph, encoding all of the information on the complexity of the network, and to relate the differential equation to a discrete functional equation on the graph. Comparison principles and representation formulae are proven in the supercritical case as well.
引用
收藏
页码:171 / 211
页数:41
相关论文
共 32 条
  • [1] Hamilton-Jacobi equations constrained on networks
    Achdou, Yves
    Camilli, Fabio
    Cutri, Alessandra
    Tchou, Nicoletta
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 413 - 445
  • [2] [Anonymous], 1994, MATH APPL
  • [3] Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
  • [4] A BELLMAN APPROACH FOR REGIONAL OPTIMAL CONTROL PROBLEMS IN RN
    Barles, G.
    Briani, A.
    Chasseigne, E.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) : 1712 - 1744
  • [5] A BELLMAN APPROACH FOR TWO-DOMAINS OPTIMAL CONTROL PROBLEMS IN RN
    Barles, G.
    Briani, A.
    Chasseigne, E.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (03) : 710 - 739
  • [6] Bernard P, 2007, J EUR MATH SOC, V9, P85
  • [7] The Monge problem for supercritical Mane potentials on compact manifolds
    Bernard, Patrick
    Buffoni, Boris
    [J]. ADVANCES IN MATHEMATICS, 2006, 207 (02) : 691 - 706
  • [8] Bressan A, 2007, NETW HETEROG MEDIA, V2, P313
  • [9] A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks
    Camilli, Fabio
    Marchi, Claudio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) : 112 - 118
  • [10] Eikonal equations on ramified spaces
    Camilli, Fabio
    Schieborn, Dirk
    Marchi, Claudio
    [J]. INTERFACES AND FREE BOUNDARIES, 2013, 15 (01) : 121 - 140