Objective: We investigated whether a reduced activity in the Rho-A/Rho-kinase pathway could be involved in the impaired vascular reactivity observed in septic shock. Design: Ex vivo animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Interventions: Rats received an intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg) either 6 or 24 hours before the onset of our experiments. The effects of Y-27632 (a Rho-kinase inhibitor) were assessed in first-order mesenteric rings taken from these animals using wire myograph. The expression of Rho-A, Rho-kinases I and II, and the total and phosphorylated myosin phosphatase targeting subunit 1 (MYPT1) were assessed by Western blotting. Measurements and Main Results: The EC50 to Y-27632 was reduced from 2.10 mu M (1.22-3.66 mu M) (control) to 0.21 mu M (0.09-0.44 mu M), and 9.54 (0.82-110.30) nM in LPS-treated groups 6 and 24 hours, respectively. The increased potency of Y-27632 was partially reversed by endothelium removal at both 6 and 24 hours. Incubation of N-omega-nitro-L-arginine methyl ester hydrochloride or 1400W (a nonselective and an inducible nitric oxide synthase inhibitor, respectively) normalized the responses to Y-27632 seen 6 hours after LPS. However, 1400W had no effect, whereas N-omega-nitro-L-arginine methyl ester hydrochloride caused a partial reduction in the enhanced potency of Y-27632 found 24 hours after LPS. The soluble guanylate cyclase inhibitor oxadiazolo[4,3-alpha]quinoxalin-1-one was able to bring the Y-27632 response back to normal both 6 and 24 hours after LIPS. Rho-A, Rho-kinase I, Rho-kinase II, and MYPT1 were increased in mesenteric arteries from endotoxemic rats, but the phosphorylated MYPT1 was significantly reduced. However, incubation with oxadiazolo[4,3alpha]quinoxalin-1-one circumvented the inhibition of MYPT1 phosphorylation found in preparations from LPS-treated animals. Conclusions: Our findings revealed an impaired Rho-A/Rho-kinase-mediated phosphorylation of MYPT1 in vessels from endotoxemic animals in a cyclic guanosine monophosphate-dependent manner, suggesting that changes in mechanisms involved in calcium sensitization play a pivotal role in cardiovascular changes observed in septic shock. (Crit Care Med 2009; 37: 1716-1723)