Two-Dimensional Transition Metal Oxides and Chalcogenides for Advanced Photocatalysis: Progress, Challenges, and Opportunities

被引:50
作者
Zhuang, Guoxin [1 ]
Yan, Jiawei [1 ]
Wen, Yonglin [1 ]
Zhuang, Zanyong [1 ,2 ]
Yu, Yan [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
[2] Fujian Prov Univ, Fuzhou Univ, Key Lab Adv Mat Technol, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
energies; environments; photocatalysts; transition metal chalcogenides; transition metal oxides; two-dimensional materials; HYDROGEN-PRODUCTION ACTIVITY; QUANTUM DOTS/ZNO NANOSHEETS; HOLEY CO3O4 NANOSHEETS; LARGE-SCALE SYNTHESIS; EXPOSED; 001; FACETS; OXYGEN EVOLUTION; TIO2; NANOSHEETS; ULTRATHIN NANOSHEETS; EFFICIENT COCATALYST; GRAPHENE OXIDE;
D O I
10.1002/solr.202000403
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sunlight-driven catalytic reactions are appealing for resolving energy and environmental problems. Transition metal oxides (TMOs) and chalcogenides (TMCs) comprise one of the most popular categories of photocatalysts, thanks to their high stability, low cost, Earth abundance, and outstanding catalytic activity. Downsizing TMOs and TMCs to 2D materials offers additional opportunities to finely tune their surface, electronic, and catalytic properties. However, 2D TMOs and TMCs fall into a less mature field than other well-established 2D materials. Less is known about their "form-to-function" relationship, and mechanisms for their synthesis await more research. Herein, the progress toward the rational design of layered and nonlayered 2D TMOs and TMCs is summarized, as well as principles to engineer their nanosheets (NSs) into 3D architectures for practical application. The formation mechanisms and crystal growth models of these 2D materials are included. The key factors that determine the electronic, surface structures, and catalytic properties of 2D TMOs and TMCs are examined in particular, which are key considerations in tuning their performance in light absorption, charge carrier transfer/separation, molecule capture and activation, etc. Finally, the present challenges and future research directions in this promising field are illustrated.
引用
收藏
页数:50
相关论文
共 372 条
[1]   Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach [J].
Abargues, Rafael ;
Navarro, Juan ;
Rodriguez-Canto, Pedro J. ;
Maulu, Alberto ;
Sanchez-Royo, Juan F. ;
Martinez-Pastor, Juan P. .
NANOSCALE, 2019, 11 (04) :1978-1987
[2]   Graphene oxide-templated synthesis of ternary oxide nanosheets for high-performance Li-ion battery anodes [J].
AbdelHamid, Ayman A. ;
Soh, Jun Hui ;
Yu, Yue ;
Ying, Jackie Y. .
NANO ENERGY, 2018, 44 :399-410
[3]   Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Field, Matthew R. ;
Daeneke, Torben ;
Chrimes, Adam F. ;
Zhang, Wei ;
Carey, Benjamin J. ;
Berean, Kyle J. ;
Walia, Sumeet ;
van Embden, Joel ;
Zhang, Baoyue ;
Latham, Kay ;
Kalantar-zadeh, Kourosh ;
Ou, Jian Zhen .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) :3482-3493
[4]   Intercalation-Induced Exfoliation and Thickness-Modulated Electronic Structure of a Layered Ternary Vanadium Oxide [J].
Andrews, Justin L. ;
De Jesus, Luis R. ;
Tolhurst, Thomas M. ;
Marley, Peter M. ;
Moewes, Alexander ;
Banerjee, Sarbajit .
CHEMISTRY OF MATERIALS, 2017, 29 (07) :3285-3294
[5]  
[Anonymous], 2018, ANGEW CHEM INT ED
[6]   2D WS2/carbon dot hybrids with enhanced photocatalytic activity [J].
Atkin, P. ;
Daeneke, T. ;
Wang, Y. ;
Carey, B. J. ;
Berean, K. J. ;
Clark, R. M. ;
Ou, J. Z. ;
Trinchi, A. ;
Cole, I. S. ;
Kalantar-zadeh, K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13563-13571
[7]   Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets [J].
Backes, Claudia ;
Campi, Davide ;
Szydlowska, Beata M. ;
Synnatschke, Kevin ;
Ojala, Ezgi ;
Rashvand, Farnia ;
Harvey, Andrew ;
Griffin, Aideen ;
Sofer, Zdenek ;
Marzari, Nicola ;
Coleman, Jonathan N. ;
O'Regan, David D. .
ACS NANO, 2019, 13 (06) :7050-7061
[8]   Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets [J].
Backes, Claudia ;
Smith, Ronan J. ;
McEvoy, Niall ;
Berner, Nina C. ;
McCloskey, David ;
Nerl, Hannah C. ;
O'Neill, Arlene ;
King, Paul J. ;
Higgins, Tom ;
Hanlon, Damien ;
Scheuschner, Nils ;
Maultzsch, Janina ;
Houben, Lothar ;
Duesberg, Georg S. ;
Donegan, John F. ;
Nicolosi, Valeria ;
Coleman, Jonathan N. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures [J].
Baek, In-Hwan ;
Pyeon, Jung Joon ;
Song, Young Geun ;
Chung, Taek-Mo ;
Kim, Hae-Ryoung ;
Baek, Seung-Hyub ;
Kim, Jin-Sang ;
Kang, Chong-Yun ;
Choi, Ji-Won ;
Hwang, Cheol Seong ;
Han, Jeong Hwan ;
Kim, Seong Keun .
CHEMISTRY OF MATERIALS, 2017, 29 (19) :8100-8110
[10]   Lanthanide near-infrared emission and energy transfer in layered WS2/MoS2 heterostructure [J].
Bai, Gongxun ;
Lyu, Yongxin ;
Wu, Zehan ;
Xu, Shiqing ;
Hao, Jianhua .
SCIENCE CHINA-MATERIALS, 2020, 63 (04) :575-581