Electrostatic Self-Assembly of Soft Matter Nanoparticle Cocrystals with Tunable Lattice Parameters

被引:71
|
作者
Liljestrom, Ville [1 ,2 ]
Seitsonen, Jani [2 ]
Kostiainen, Mauri A. [1 ]
机构
[1] Aalto Univ, Dept Biotechnol & Chem Technol, Biohybrid Mat, Aalto 00076, Finland
[2] Aalto Univ, Dept Appl Phys, Mol Mat, Aalto 00076, Finland
基金
芬兰科学院;
关键词
nanoparticle; self-assembly; supramolecular interactions; crystal; dendrimer; ferritin; protein cage; RECOMBINANT HUMAN H; STRUCTURAL DIVERSITY; PROTEIN; DENDRIMERS; CRYSTALS; FERRITIN; DESIGN; SUPERLATTICE; ANISOTROPY; FRAMEWORK;
D O I
10.1021/acsnano.5b04912
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomic crystal structure affects the electromagnetic and thermal properties of common matter. Similarly, the nanoscale structure controls the properties of higher length-scale metamaterials, for example, nanoparticle superlattices and photonic crystals. Electrostatic self-assembly of oppositely charged nanoparticles has recently become a convenient way to produce crystalline nanostructures. However, understanding and controlling the assembly of soft nonmetallic particle crystals with long-range translational order remains a major challenge. Here, we show the electrostatic self-assembly of binary soft particle cocrystals, consisting of apoferritin protein cages and poly(amidoamine) dendrimers (PAMAM), with very large crystal domain sizes. A systematic series of PAMAM dendrimers with generations from two to seven were used to produce the crystals, which showed a dendrimer generation dependency on the crystal structure and lattice constant. The systematic approach presented here offers a transition from trial-and-error experiments to a fundamental understanding and control over the nanostructure. The structure and stability of soft particle cocrystals are of major relevance for applications where a high degree of structural control is required, for example, protein-based mesoporous materials, nanoscale multicompartments, and metamaterials.
引用
收藏
页码:11278 / 11285
页数:8
相关论文
共 50 条
  • [41] Nanoparticle self-assembly using π-π interactions
    Caputo, Gianvito
    Pinna, Nicola
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (07) : 2370 - 2378
  • [42] Plasmon coupling in a nanoparticle self-assembly
    Link, Stephan
    Chang, Wei-Shun
    Slaughter, Liam
    Khanal, Bishnu
    Manna, Pramit
    Zubarev, Eugene
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [43] NANOPARTICLE SELF-ASSEMBLY Enantioselective photoactivation
    Kahr, Bart
    Shtukenberg, Alexander G.
    NATURE MATERIALS, 2015, 14 (01) : 21 - 22
  • [44] Proteolytic actuation of nanoparticle self-assembly
    Harris, Todd I.
    Maltzahn, Geoffrey von
    Derfus, Austin M.
    Ruoslahti, Erkki
    Bhatia, Sangeeta N.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (19) : 3161 - 3165
  • [45] Shape effect in nanoparticle self-assembly
    Jana, NR
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (12) : 1536 - 1540
  • [46] Self-assembly of cobalt nanoparticle rings
    Tripp, SL
    Pusztay, SV
    Ribbe, AE
    Wei, A
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (27) : 7914 - 7915
  • [47] Self-assembly of iron nanoparticle arrays
    Majetich, SA
    Farrell, DF
    GRANULAR MATERIAL-BASED TECHNOLOGIES, 2003, 759 : 3 - 14
  • [48] Self-assembly of unusual nanoparticle crystals
    Velev, OD
    SCIENCE, 2006, 312 (5772) : 376 - 377
  • [49] Self-assembly of nanoparticle ring patterns
    Parisi, J
    Govor, LV
    Bauer, GH
    Reiter, G
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 99 - 102
  • [50] Self-Assembly of Nanoparticle/Organic Hybrids
    Cheng, Stephen Z. D.
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1016 - 1016