Electrostatic Self-Assembly of Soft Matter Nanoparticle Cocrystals with Tunable Lattice Parameters

被引:72
|
作者
Liljestrom, Ville [1 ,2 ]
Seitsonen, Jani [2 ]
Kostiainen, Mauri A. [1 ]
机构
[1] Aalto Univ, Dept Biotechnol & Chem Technol, Biohybrid Mat, Aalto 00076, Finland
[2] Aalto Univ, Dept Appl Phys, Mol Mat, Aalto 00076, Finland
基金
芬兰科学院;
关键词
nanoparticle; self-assembly; supramolecular interactions; crystal; dendrimer; ferritin; protein cage; RECOMBINANT HUMAN H; STRUCTURAL DIVERSITY; PROTEIN; DENDRIMERS; CRYSTALS; FERRITIN; DESIGN; SUPERLATTICE; ANISOTROPY; FRAMEWORK;
D O I
10.1021/acsnano.5b04912
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomic crystal structure affects the electromagnetic and thermal properties of common matter. Similarly, the nanoscale structure controls the properties of higher length-scale metamaterials, for example, nanoparticle superlattices and photonic crystals. Electrostatic self-assembly of oppositely charged nanoparticles has recently become a convenient way to produce crystalline nanostructures. However, understanding and controlling the assembly of soft nonmetallic particle crystals with long-range translational order remains a major challenge. Here, we show the electrostatic self-assembly of binary soft particle cocrystals, consisting of apoferritin protein cages and poly(amidoamine) dendrimers (PAMAM), with very large crystal domain sizes. A systematic series of PAMAM dendrimers with generations from two to seven were used to produce the crystals, which showed a dendrimer generation dependency on the crystal structure and lattice constant. The systematic approach presented here offers a transition from trial-and-error experiments to a fundamental understanding and control over the nanostructure. The structure and stability of soft particle cocrystals are of major relevance for applications where a high degree of structural control is required, for example, protein-based mesoporous materials, nanoscale multicompartments, and metamaterials.
引用
收藏
页码:11278 / 11285
页数:8
相关论文
共 50 条
  • [31] Predicting Chiral Nanostructures, Lattices and Super lattices in Complex Multicomponent Nanoparticle Self-Assembly
    Hur, Kahyun
    Hennig, Richard G.
    Escobedo, Fernando A.
    Wiesner, Ulrich
    NANO LETTERS, 2012, 12 (06) : 3218 - 3223
  • [32] Self-assembly of functionally gradient nanoparticle structures
    Park, Jonghyun
    Lu, Wei
    APPLIED PHYSICS LETTERS, 2008, 93 (24)
  • [33] NANOPARTICLE SELF-ASSEMBLY A loop of two rods
    Yeom, Bongjun
    Kotov, Nicholas A.
    NATURE MATERIALS, 2014, 13 (03) : 228 - 229
  • [34] Magnetically tunable self-assembly of colloidal rings
    Li, Kwan H.
    Yellen, Benjamin B.
    APPLIED PHYSICS LETTERS, 2010, 97 (08)
  • [35] Trigonal Rigid Triphenols: Self-Assembly and Multicomponent Lattice Inclusion
    Moorthy, Jarugu Narasimha
    Natarajan, Palani
    Bajpai, Alankriti
    Venugopalan, Paloth
    CRYSTAL GROWTH & DESIGN, 2011, 11 (08) : 3406 - 3417
  • [36] Fabrication of artificial crystals with tunable lattice constant via self-assembly of floating magnetic particles
    Saado, Y
    Golosovsky, M
    Davidov, D
    Frenkel, A
    SYNTHETIC METALS, 2001, 116 (1-3) : 427 - 432
  • [37] Photovoltaic interface modification via electrostatic self-assembly
    Baur, JW
    Durstock, MF
    Taylor, BE
    Spry, RJ
    Reulbach, S
    Chiang, LY
    SYNTHETIC METALS, 2001, 121 (1-3) : 1547 - 1548
  • [38] Tunable crystallization, degradation, and self-assembly of recombinant protein block copolymers
    Huang, Wenwen
    Krishnaji, Sreevidhya
    Tokareva, Olena Rabotyagova
    Kaplan, David
    Cebe, Peggy
    POLYMER, 2017, 117 : 107 - 116
  • [39] Electrostatic self-assembly of nanocomposite hybrid fluorescent sensors
    Brown, JQ
    Guice, KB
    Simpson, RT
    McShane, MJ
    NANOBIOPHOTONICS AND BIOMEDICAL APPLICATIONS, 2004, 5331 : 52 - 59
  • [40] Electrostatic self-assembly of hierarchical porous carbon microparticles
    Balach, Juan
    Bruno, Mariano M.
    Gustavo Cotella, N.
    Acevedo, Diego F.
    Barbero, Cesar A.
    JOURNAL OF POWER SOURCES, 2012, 199 : 386 - 394