MULTIPLE-INFLATION POISSON MODEL WITH L1 REGULARIZATION

被引:15
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Tan, Xianming [3 ]
Tripathi, Arvind [4 ]
机构
[1] Univ Alabama Birmingham, Sch Nursing, Birmingham, AL 35294 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] McGill Univ, Ctr Hlth, Montreal, PQ H3H 2R9, Canada
[4] Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USA
基金
美国国家科学基金会;
关键词
Count data; LASSO; Poisson distribution; variable selection; zero-inflated; NONCONCAVE PENALIZED LIKELIHOOD; REGRESSION-MODELS; VARIABLE SELECTION; ORACLE PROPERTIES; LASSO;
D O I
10.5705/ss.2012.187
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A multiple-inflation Poisson (MIP) model is put forward for analyzing count data that have multiple inflated values. Analogous to the zero-inflated Poisson model (ZIP; Lambert (1992)), MIP assumes a mixture distribution of Poisson and degenerate distributions, where the probabilities for the inflated values are from a cumulative logit model. We explore the properties of the proposed model, with a detailed treatment given to its maximum likelihood estimation. Moreover, we address variable selection by adopting an L-1 regularization scheme. Both simulation experiments and an analysis of a health care data set are provided to illustrate the multiple-inflation Poisson model.
引用
收藏
页码:1071 / 1090
页数:20
相关论文
共 50 条
[11]   The L1/2 regularization network Cox model for analysis of genomic data [J].
Jiang, Hong-Kun ;
Liang, Yong .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :203-208
[12]   Group analysis of fMRI data using L1 and L2 regularization [J].
Overholser, Rosanna ;
Xu, Ronghui .
STATISTICS AND ITS INTERFACE, 2015, 8 (03) :379-390
[13]   L1 Regularization for High-Dimensional Multivariate GARCH Models [J].
Yao, Sijie ;
Zou, Hui ;
Xing, Haipeng .
RISKS, 2024, 12 (02)
[14]   Training Compact DNNs with l1/2 Regularization [J].
Tang, Anda ;
Niu, Lingfeng ;
Miao, Jianyu ;
Zhang, Peng .
PATTERN RECOGNITION, 2023, 136
[15]   The L1/2 regularization approach for survival analysis in the accelerated failure time model [J].
Chai, Hua ;
Liang, Yong ;
Liu, Xiao-Ying .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 :283-290
[16]   Some sharp performance bounds for least squares regression with L1 regularization [J].
Zhang, Tong .
ANNALS OF STATISTICS, 2009, 37 (5A) :2109-2144
[17]   l1/2,1 group sparse regularization for compressive sensing [J].
Liu, Shengcai ;
Zhang, Jiangshe ;
Liu, Junmin ;
Yin, Qingyan .
SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (05) :861-868
[18]   Transformed l1 regularization for learning sparse deep neural networks [J].
Ma, Rongrong ;
Miao, Jianyu ;
Niu, Lingfeng ;
Zhang, Peng .
NEURAL NETWORKS, 2019, 119 :286-298
[19]   Learning Gaussian Graphical Models With Ordered Weighted l1 Regularization [J].
Mazza-Anthony, Cody ;
Mazoure, Bogdan ;
Coates, Mark .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) :489-499
[20]   Gene Selection in Cancer Classification Using Sparse Logistic Regression with L1/2 Regularization [J].
Wu, Shengbing ;
Jiang, Hongkun ;
Shen, Haiwei ;
Yang, Ziyi .
APPLIED SCIENCES-BASEL, 2018, 8 (09)