Orientation Mapping via Precession-Enhanced Electron Diffraction and Its Applications in Materials Science

被引:38
|
作者
Brons, J. G. [1 ]
Thompson, G. B. [1 ]
机构
[1] Univ Alabama, Dept Mat & Met Engn, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
BOUNDARY-CHARACTER-DISTRIBUTION; BACKSCATTER DIFFRACTION; SPATIAL-RESOLUTION; CRITICAL-VOLTAGE; MICROSCOPY; EVOLUTION; REFINEMENT; MECHANISMS; CRYSTALS; TEXTURE;
D O I
10.1007/s11837-013-0799-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Precession-enhanced diffraction (PED) is a transmission electron microscopy technique that allows for pseudo-kinematical diffraction conditions to occur. Using collected spot patterns, PED has successfully been demonstrated to provide for phase and orientation mapping in a variety of materials. One major advantage of PED is the fine spatial resolution, on the order of a few nanometers, allowing previously inaccessible grain boundary orientation mapping of nanostructured materials to be realized. This article provides a basic overview of the emerging technique with selected highlights of its application to materials science and engineering.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 50 条
  • [1] Orientation Mapping via Precession-Enhanced Electron Diffraction and Its Applications in Materials Science
    J. G. Brons
    G. B. Thompson
    JOM, 2014, 66 : 165 - 170
  • [2] Precession Electron Diffraction assisted Orientation Mapping in the Transmission Electron Microscope
    Portillo, Joaquim
    Rauch, Edgar F.
    Nicolopoulos, Stavros
    Gemmi, Mauro
    Bultreys, Daniel
    ADVANCED ELECTRON MICROSCOPY AND NANOMATERIALS, 2010, 644 : 1 - +
  • [3] Nanocrystalline orientation and phase mapping of textured coatings revealed by precession electron diffraction
    Mohseni, H.
    Collins, P. C.
    Scharf, T. W.
    NANOMATERIALS AND ENERGY, 2012, 1 (06) : 318 - 323
  • [4] Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction
    Rauch, Edgar F.
    Portillo, Joaquin
    Nicolopoulos, Stavros
    Bultreys, Daniel
    Rouvimov, Sergei
    Moeck, Peter
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2010, 225 (2-3): : 103 - 109
  • [5] Improving orientation mapping by enhancing the diffraction signal using Auto-CLAHE in precession electron diffraction data
    Wang, Ainiu L.
    Hansen, Marcus H.
    Lai, Yi-Cheng
    Dong, Jiaqi
    Xie, Kelvin Y.
    MICROSTRUCTURES, 2023, 3 (04):
  • [6] Precession electron diffraction assisted orientation mapping of gradient nanostructure in a Ni-based superalloy
    Feng, Z. Q.
    Chen, Y. X.
    Wu, G. L.
    Yang, Y. Q.
    36TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, 2015, 89
  • [7] APPLICATIONS OF CONVERGENT BEAM ELECTRON-DIFFRACTION IN MATERIALS SCIENCE
    EAGLESHAM, DJ
    JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE, 1989, 13 (01): : 66 - 75
  • [8] Applications of electron backscatter diffraction to materials science: status in 2009
    Randle, Valerie
    JOURNAL OF MATERIALS SCIENCE, 2009, 44 (16) : 4211 - 4218
  • [9] Applications of electron backscatter diffraction to materials science: status in 2009
    Valerie Randle
    Journal of Materials Science, 2009, 44 : 4211 - 4218
  • [10] Crystallographic variant mapping using precession electron diffraction data
    Hansen, Marcus H.
    Wang, Ainiu L.
    Dong, Jiaqi
    Zhang, Yuwei
    Umale, Tejas
    Banerjee, Sarbajit
    Shamberger, Patrick
    Pharr, Matt
    Karaman, Ibrahim
    Xie, Kelvin Y.
    MICROSTRUCTURES, 2023, 3 (04):