A new model or periodic precipitation incorporating nucleation, growth and ripening

被引:42
作者
Chacron, M [1 ]
L'Heureux, I [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
periodic precipitation; Liesegang bands; competitive growth model; prenucleation model; postnucleation model;
D O I
10.1016/S0375-9601(99)00709-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present and solve a one-dimensional model of periodic precipitation which includes nucleation, growth and ripening processes. This model thus generalizes two important models: the prenucleation-based model of Dee and the postnucleation competitive growth model (CGM) of Feeney et al. By tuning a simple phenomenological parameter, our model smoothly bridges the gap between a nucleation-growth dominated regime and one where ripening is active. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 30 条
[21]  
MULLER SC, 1982, J PHYS CHEM-US, V86, P4078
[22]  
Ortoleva P., 1994, GEOCHEMICAL SELF ORG
[23]  
Ostwald W., 1897, LEHRBUCH ALLGEMEINEM
[24]   Complexity of precipitation patterns: Comparison of simulation with experiment [J].
Polezhaev, A. A. ;
Mueller, S. C. .
CHAOS, 1994, 4 (04) :631-636
[25]   PERIODIC PRECIPITATION [J].
PRAGER, S .
JOURNAL OF CHEMICAL PHYSICS, 1956, 25 (02) :279-283
[26]   Theory of nucleation and growth during phase separation [J].
Sagui, C ;
Grant, M .
PHYSICAL REVIEW E, 1999, 59 (04) :4175-4187
[27]   ON OSTWALD SUPERSATURATION THEORY OF RHYTHMIC PRECIPITATION (LIESEGANG RINGS) [J].
SMITH, DA .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (07) :3102-3115
[29]   DYNAMICS OF FIRST-ORDER PHASE-TRANSITIONS - THEORY OF COARSENING (OSTWALD RIPENING) FOR OPEN SYSTEMS [J].
VENZL, G .
PHYSICAL REVIEW A, 1985, 31 (05) :3431-3440
[30]  
von Rosenberg D. U., 1969, Methods for the numerical Solution of Partial Differential Equations