Jacobi Maass forms

被引:22
作者
Pitale, Ameya [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2009年 / 79卷 / 01期
关键词
Jacobi forms; Maass forms; Jacobi group; Automorphic representation; MODULAR-FORMS; SERIES;
D O I
10.1007/s12188-008-0013-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a new definition for the space of non-holomorphic Jacobi Maass forms (denoted by J(k,m)(nh)) of weight k is an element of Z and index m is an element of N as eigenfunctions of a degree three differential operator C-k,C-m. We show that the three main examples of Jacobi forms known in the literature: holomorphic, skew-holomorphic and real-analytic Eisenstein series, are contained in J(k,m)(nh). We construct new examples of cuspidal Jacobi Maass forms F-f of weight k is an element of 2Z and index 1 from weight k-1/2 Maass forms f with respect to Gamma(0)(4) and show that the map f bar right arrow F-f is Hecke equivariant. We also show that the above map is compatible with the well-known representation theory of the Jacobi group. In addition, we wshow that all of J(k,m)(nh) can be "essentially" obtained from scalar or vector valued half integer weight Maass forms.
引用
收藏
页码:87 / 111
页数:25
相关论文
共 50 条
  • [41] Lower bounds for Maass forms on semisimple groups
    Brumley, Farrell
    Marshall, Simon
    COMPOSITIO MATHEMATICA, 2020, 156 (05) : 959 - 1003
  • [42] Polar harmonic Maass forms and holomorphic projection
    Males, Joshua
    Mono, Andreas
    Rolen, Larry
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (09) : 1975 - 2004
  • [43] Heegner divisors, L-functions and harmonic weak Maass forms
    Bruinier, Jan
    Ono, Ken
    ANNALS OF MATHEMATICS, 2010, 172 (03) : 2135 - 2181
  • [44] The quantitative distribution of Hecke eigenvalues of Maass forms
    Moni Kumari
    Jyoti Sengupta
    Research in Number Theory, 2022, 8
  • [45] L-VALUES OF HARMONIC MAASS FORMS
    Diamantis, Nikolaos
    Rolen, Larry
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (06) : 3905 - 3926
  • [46] Jacobi forms that characterize paramodular forms
    Ibukiyama, Tomoyoshi
    Poor, Cris
    Yuen, David S.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2013, 83 (01): : 111 - 128
  • [47] Jacobi forms that characterize paramodular forms
    Tomoyoshi Ibukiyama
    Cris Poor
    David S. Yuen
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2013, 83 : 111 - 128
  • [48] The nonholomorphic parts of certain weak Maass forms
    Dewar, Michael
    JOURNAL OF NUMBER THEORY, 2010, 130 (03) : 559 - 573
  • [49] SHINTANI THETA LIFTS OF HARMONIC MAASS FORMS
    Alfes-Neumann, Claudia
    Schwagenscheidt, Markus
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (04) : 2297 - 2339
  • [50] Harmonic weak Maass forms and periods II
    Alfes, Claudia
    Bruinier, Jan Hendrik
    Schwagenscheidt, Markus
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 791 - 817