THE NEURAL BASIS OF REVERSAL LEARNING: AN UPDATED PERSPECTIVE

被引:415
作者
Izquierdo, A. [1 ]
Brigman, J. L. [2 ]
Radke, A. K. [3 ]
Rudebeck, P. H. [4 ,5 ]
Holmes, A. [3 ]
机构
[1] Univ Calif Los Angeles, Brain Res Inst, Dept Psychol, Los Angeles, CA 90024 USA
[2] Univ New Mexico, Sch Med, Dept Neurosci, Albuquerque, NM 87131 USA
[3] NIAAA, Lab Behav & Genom Neurosci, Bethesda, MD USA
[4] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
关键词
frontal cortex; striatum; amygdala; dopamine; serotonin; glutamate; MEDIAL PREFRONTAL CORTEX; PRELIMBIC-INFRALIMBIC AREAS; ANTERIOR CINGULATE CORTEX; ORBITOFRONTAL CORTEX; BEHAVIORAL FLEXIBILITY; BASOLATERAL AMYGDALA; DORSOMEDIAL STRIATUM; FRONTAL-CORTEX; SEROTONIN TRANSPORTER; VISUAL-DISCRIMINATION;
D O I
10.1016/j.neuroscience.2016.03.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as a heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principal neurotransmitter systems involved. This article is part of a Special issue entitled: Cognitive Flexibility (C) 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 26
页数:15
相关论文
共 219 条
[81]   Monoamine Levels Within the Orbitofrontal Cortex and Putamen Interact to Predict Reversal Learning Performance [J].
Groman, Stephanie M. ;
James, Alex S. ;
Seu, Emanuele ;
Crawford, Maverick A. ;
Harpster, Sandra N. ;
Jentsch, James David .
BIOLOGICAL PSYCHIATRY, 2013, 73 (08) :756-762
[82]  
HABER SN, 1995, J NEUROSCI, V15, P4851
[83]  
Hamilton D, 2014, GENES BRAIN BEHAV
[84]  
Hamilton DA., 2015, GENES BRAIN BEHAV
[85]   Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex [J].
Hampton, Alan N. ;
Adolphs, Ralph ;
Tyszka, Michael J. ;
O'Doherty, John P. .
NEURON, 2007, 55 (04) :545-555
[86]   Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility [J].
Homberg, Judith R. ;
Pattij, Tommy ;
Janssen, Mieke C. W. ;
Ronken, Eric ;
De Boer, Sietse F. ;
Schoffelmeer, Anton N. M. ;
Cuppen, Edwin .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2007, 26 (07) :2066-2073
[87]   Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans [J].
Hornak, J ;
O'Doherty, J ;
Bramham, J ;
Rolls, ET ;
Morris, RG ;
Bullock, PR ;
Polkey, CE .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (03) :463-478
[88]   The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia [J].
Hvoslef-Eide, M. ;
Mar, A. C. ;
Nilsson, S. R. O. ;
Alsioe, J. ;
Heath, C. J. ;
Saksida, L. M. ;
Robbins, T. W. ;
Bussey, T. J. .
PSYCHOPHARMACOLOGY, 2015, 232 (21-22) :3853-3872
[89]   Establishing a probabilistic reversal learning test in mice: Evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin [J].
Ineichen, Christian ;
Sigrist, Hannes ;
Spinelli, Simona ;
Lesch, Klaus-Peter ;
Sautter, Eva ;
Seifritz, Erich ;
Pryce, Christopher R. .
NEUROPHARMACOLOGY, 2012, 63 (06) :1012-1021
[90]   Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency [J].
Izquierdo, A ;
Suda, RK ;
Murray, EA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (34) :7540-7548