Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices

被引:6
作者
Radosavljevic, Ana [1 ,2 ]
Gligoric, Goran [2 ]
Maluckov, Aleksandra [2 ]
Stepic, Milutin [2 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Belgrade 11120, Serbia
[2] Univ Belgrade, Vinca Inst Nucl Sci, P Grp, Belgrade, Serbia
关键词
light localization; quasi-periodic photonic lattices; nonlinearity; light propagation control; ANDERSON LOCALIZATION; SOLITONS; WAVES; CHAOS;
D O I
10.1088/2040-8978/16/2/025201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate light localization in quasi-periodic nonlinear photonic lattices (PLs) composed of two periodic component lattices of equal lattice potential strength and incommensurate spatial periods. By including the system parameters from the experimentally realizable setup, we confirm that the light localization is a threshold determined phenomenon in a limit of negligible nonlinearity. In addition, we show that self-trapping can affect the localized light in the established setup only in the presence of strong nonlinearity. Guided by these findings we consider the possibility of governing light propagation by proposing a composite lattice system comprising alternating quasi-periodic parts with different potential depths and nonlinearity strengths.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Suppressing the critical collapse of solitons by one-dimensional quintic nonlinear lattices [J].
Zeng, Jianhua ;
Malomed, Boris A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 127 :287-296
[32]   Discrete embedded solitary waves and breathers in one-dimensional nonlinear lattices [J].
Palmero, Faustino ;
Molina, Mario, I ;
Cuevas-Maraver, Jesus ;
Kevrekidis, Panayotis G. .
PHYSICS LETTERS A, 2022, 425
[33]   Peculiarities of Light Absorption in Chirped One-Dimensional Photonic Crystals [J].
A. H. Gevorgyan ;
N. A. Vanyushkin ;
I. M. Efimov ;
S. S. Golik ;
S. A. Mkhitaryan ;
M. Z. Harutyunyan ;
M. S. Rafaelyan .
Optics and Spectroscopy, 2022, 130 :495-502
[34]   Peculiarities of Light Absorption in Chirped One-Dimensional Photonic Crystals [J].
Gevorgyan, A. H. ;
Vanyushkin, N. A. ;
Efimov, I. M. ;
Golik, S. S. ;
Mkhitaryan, S. A. ;
Harutyunyan, M. Z. ;
Rafaelyan, M. S. .
OPTICS AND SPECTROSCOPY, 2022, 130 (08) :495-502
[35]   Wave transmission through periodic, quasiperiodic, and random one-dimensional finite lattices [J].
Gutierrez-Medina, Braulio .
AMERICAN JOURNAL OF PHYSICS, 2013, 81 (02) :104-111
[36]   Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices [J].
Xu Zhi-Hao ;
Huangfu Hong-Li ;
Zhang Yun-Bo .
ACTA PHYSICA SINICA, 2019, 68 (08)
[37]   Topological Anderson insulator phases in one dimensional quasi-periodic mechanical SSH chains [J].
Sircar, Sayan .
PHYSICS LETTERS A, 2025, 537
[38]   Disorder-induced light trapping enhanced by pulse collisions in one-dimensional nonlinear photonic crystals [J].
Novitsky, Denis V. .
OPTICS COMMUNICATIONS, 2015, 353 :56-62
[39]   Pulse propagation in one-dimensional disordered photonic crystals: interplay of disorder with instantaneous and relaxing nonlinearities [J].
Novitsky, Denis V. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (06) :1282-1289
[40]   Quasi-one-dimensional Bose-Einstein condensates in nonlinear lattices [J].
Salasnich, L. ;
Malomed, B. A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (05)