Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices

被引:6
作者
Radosavljevic, Ana [1 ,2 ]
Gligoric, Goran [2 ]
Maluckov, Aleksandra [2 ]
Stepic, Milutin [2 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Belgrade 11120, Serbia
[2] Univ Belgrade, Vinca Inst Nucl Sci, P Grp, Belgrade, Serbia
关键词
light localization; quasi-periodic photonic lattices; nonlinearity; light propagation control; ANDERSON LOCALIZATION; SOLITONS; WAVES; CHAOS;
D O I
10.1088/2040-8978/16/2/025201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate light localization in quasi-periodic nonlinear photonic lattices (PLs) composed of two periodic component lattices of equal lattice potential strength and incommensurate spatial periods. By including the system parameters from the experimentally realizable setup, we confirm that the light localization is a threshold determined phenomenon in a limit of negligible nonlinearity. In addition, we show that self-trapping can affect the localized light in the established setup only in the presence of strong nonlinearity. Guided by these findings we consider the possibility of governing light propagation by proposing a composite lattice system comprising alternating quasi-periodic parts with different potential depths and nonlinearity strengths.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Investigation of reentrant localization transition in one-dimensional quasi-periodic lattice with long-range hopping [J].
Chang, Pei-Jie ;
Zeng, Qi-Bo ;
Pi, Jinghui ;
Ruan, Dong ;
Long, Gui-Lu .
NEW JOURNAL OF PHYSICS, 2025, 27 (05)
[22]   GEOMETRICALLY INDUCED NONLINEAR DYNAMICS IN ONE-DIMENSIONAL LATTICES [J].
Hamilton, M. ;
Bonfim, O. F. De Alcantara .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08) :2471-2476
[23]   Formation of nonlinear modes in one-dimensional quasiperiodic lattices with a mobility edge [J].
Zezyulin, Dmitry A. ;
Alfimov, Georgy L. .
PHYSICAL REVIEW A, 2024, 110 (06)
[24]   Size effect on light propagation modulation near band edges in one-dimensional periodic structures [J].
Tang, Yang ;
Wang, Jiajun ;
Zhao, Xingqi ;
Li, Tongyu ;
Shi, Lei .
CHINESE PHYSICS B, 2023, 32 (05)
[25]   Wave propagation in one-dimensional nonlinear acoustic metamaterials [J].
Fang, Xin ;
Wen, Jihong ;
Bonello, Bernard ;
Yin, Jianfei ;
Yu, Dianlong .
NEW JOURNAL OF PHYSICS, 2017, 19
[26]   Disorderless Quasi-localization of Polar Gases in One-Dimensional Lattices [J].
Li, W. ;
Dhar, A. ;
Deng, X. ;
Kasamatsu, K. ;
Barbiero, L. ;
Santos, L. .
PHYSICAL REVIEW LETTERS, 2020, 124 (01)
[27]   A quasi-periodic route to chaos in a parametrically driven nonlinear medium [J].
Cabanas, Ana M. ;
Rivas, Ronald ;
Perez, Laura M. ;
Velez, Javier A. ;
Diaz, Pablo ;
Clerc, Marcel G. ;
Pleiner, Harald ;
Laroze, David ;
Malomed, Boris A. .
CHAOS SOLITONS & FRACTALS, 2021, 151
[28]   Anderson localization for the discrete one-dimensional quasi-periodic Schrodinger operator with potential defined by a Gevrey-class function [J].
Klein, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (02) :255-292
[29]   Microwave properties of nonlinear one-dimensional quasiperiodic photonic crystals [J].
Trabelsi, Y. ;
Kanzari, M. .
PHOTONIC CRYSTAL MATERIALS AND DEVICES X, 2012, 8425
[30]   Band structure and reflectance for a nonlinear one-dimensional photonic crystal [J].
Gutierrez-Lopez, S. ;
Castellanos-Moreno, A. ;
Corella-Madueno, A. ;
Rosas, R. A. ;
Reyes, J. A. .
OPTICS COMMUNICATIONS, 2012, 285 (09) :2439-2444