On all fractional (a, b, k)-critical graphs

被引:18
|
作者
Zhou, Si Zhong [1 ]
Sun, Zhi Ren [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; neighborhood union; all fractional [a; b]-factor; all fractional (a; b; k)-critical; NEIGHBORHOOD CONDITION; K-FACTORS; EXISTENCE;
D O I
10.1007/s10114-014-2629-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, k, r be nonnegative integers with 1 a parts per thousand currency sign a a parts per thousand currency sign b and r a parts per thousand yen 2. Let G be a graph of order n with . In this paper, we first show a characterization for all fractional (a, b, k)-critical graphs. Then using the result, we prove that G is all fractional (a, b, k)-critical if and for any independent subset {x (1), x (2), aEuro broken vertical bar, x (r) } in G. Furthermore, it is shown that the lower bound on the condition is best possible in some sense, and it is an extension of Lu's previous result.
引用
收藏
页码:696 / 702
页数:7
相关论文
共 50 条
  • [41] Minimum Degree, Independence Number and (a, b, k)-Critical Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2013, 108 : 425 - 430
  • [42] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [43] Remarks on Fractional ID-k-factor-critical Graphs
    Zhou, Si-zhong
    Xu, Lan
    Xu, Zu-run
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 458 - 464
  • [44] Remarks on Fractional ID-k-factor-critical Graphs
    Si-zhong Zhou
    Lan Xu
    Zu-run Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 458 - 464
  • [45] Remarks on Fractional ID-k-factor-critical Graphs
    Si-zhong ZHOU
    Lan XU
    Zu-run XU
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 458 - 464
  • [46] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [47] Research on Fractional Critical Covered Graphs
    Wang, S.
    Zhang, W.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (03) : 270 - 277
  • [48] Independence number and minimum degree for fractional ID-k-factor-critical graphs
    Zhou, Sizhong
    Xu, Lan
    Sun, Zhiren
    AEQUATIONES MATHEMATICAE, 2012, 84 (1-2) : 71 - 76
  • [49] Binding number and minimum degree for fractional ID-k-factor-critical graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2016, 99 : 273 - 280
  • [50] A neighborhood union condition for fractional (k, m)-deleted graphs
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 225 - 233