Brand Community Analysis On Social Networks Using Graph Representation Learning

被引:3
作者
Brambilla, Marco [1 ]
Gasparini, Mattia [1 ]
机构
[1] Politecn Milan, Milan, Italy
来源
SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING | 2019年
关键词
D O I
10.1145/3297280.3297482
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a world more and more connected, new and complex interaction patterns can be extracted in the communication between people. This is extremely valuable for brands that can better understand the interests of users and the trends on social media to better target their products. In this paper, we aim to analyze the communities that arise around commercial brands on social networks to understand the meaning of similarity, collaboration, and interaction among users. We exploit the network that builds around the brands by encoding it into a graph model. We build a social network graph, considering user nodes and friendship relations; then we compare it with a heterogeneous graph model, where also posts and hashtags are considered as nodes and connected to the different node types; we finally build also a reduced network, generated by inducing direct user-to-user connections through the intermediate nodes (posts and hashtags). These different variants are encoded using graph representation learning, which generates a numerical vector for each node. Machine learning techniques are applied to these vectors to extract valuable insights for each user and for the communities they belong to. In the paper, we report on our experiments performed on an emerging fashion brand on Instagram, and we show that our approach is able to discriminate potential customers for the brand, and to highlight meaningful sub-communities composed by users that share the same kind of content on social networks.
引用
收藏
页码:2060 / 2069
页数:10
相关论文
共 15 条
[1]  
[Anonymous], [No title captured]
[2]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[3]   Reassembling the city through Instagram [J].
Boy, John D. ;
Uitermark, Justus .
TRANSACTIONS OF THE INSTITUTE OF BRITISH GEOGRAPHERS, 2017, 42 (04) :612-624
[4]   Spatial Analysis of Social Media Response to Live Events The Case of the Milano Fashion Week [J].
Brambilla, Marco ;
Ceri, Stefano ;
Daniel, Florian ;
Donetti, Gianmarco .
WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2017, :1457-1462
[5]  
Brandes Ulrik, 2009, THESIS
[6]   Segmenting consumer reactions to social network marketing [J].
Campbell, Colin ;
Ferraro, Carla ;
Sands, Sean .
EUROPEAN JOURNAL OF MARKETING, 2014, 48 (3-4) :432-452
[7]  
Deeb-Swihart J., 2017, Proceedings of the Eleventh International AAAI Conference on I b and Social Media, P42, DOI [DOI 10.1609/ICWSM.V11I1.14896, 10.1609/icwsm.v11i1.14896]
[8]  
Grover A., 2016, P 22 ACM SIGKDD INT
[9]   Community Detection in Political Discussions on Twitter: An Application of the Retweet Overlap Network Method to the Catalan Process Toward Independence [J].
Guerrero-Sole, Frederic .
SOCIAL SCIENCE COMPUTER REVIEW, 2017, 35 (02) :244-261
[10]   Classifying Twitter Topic-Networks Using Social Network Analysis [J].
Himelboim, Itai ;
Smith, Marc A. ;
Rainie, Lee ;
Shneiderman, Ben ;
Espina, Camila .
SOCIAL MEDIA + SOCIETY, 2017, 3 (01)