Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion

被引:45
|
作者
Wang, Chuan Ting [1 ,2 ]
Escudeiro, Ana [3 ]
Polcar, Tomas [1 ]
Cavaleiro, Albano [3 ]
Wood, Robert J. K. [1 ]
Gao, Nong [2 ]
Langdon, Terence G. [2 ,4 ,5 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Natl Ctr Adv Tribol Southampton, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Mat Res Grp, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
[3] Univ Coimbra, SEG CEMUC Dept Mech Engn, P-3030788 Coimbra, Portugal
[4] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
基金
英国工程与自然科学研究理事会;
关键词
High-pressure torsion; Titanium; DLC-Zr coatings; Adhesion; Bio-implants; SEVERE PLASTIC-DEFORMATION; CARBON THIN-FILMS; MECHANICAL-PROPERTIES; ROOM-TEMPERATURE; PURE TITANIUM; WEAR BEHAVIOR; ADHESION; HARDNESS; ALLOY; STRENGTH;
D O I
10.1016/j.wear.2012.12.033
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
High-pressure torsion was employed to refine the microstructure of grade 2 Ti under an imposed pressure of 3.0 GPa at room temperature. The microhardness of grade 2 Ti increased from 1.82 GPa for the coarse grain state to 3.05 GPa after high-pressure torsion processing, where this value is very close to the hardness of the Ti-6Al-4V alloy. Subsequently, several diamond-like carbon (DLC) coatings with thicknesses of similar to 1.4 mu m were deposited on as-received Ti, high-pressure torsion processed Ti and Ti-6Al-4V samples via physical vapour deposition. Both indentation and scratch tests showed a much improved adhesion of DLC-7Zr, DLC:H-7Zr and DLC-9Zr coatings with high-pressure torsion processed Ti as the substrate by comparison with the same coatings on coarse-grained Ti. The results suggest that commercial pure Ti processed by high-pressure torsion and coated with a diamond-like carbon coating provides a potential candidate material for bio-implant applications. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 310
页数:7
相关论文
共 50 条
  • [21] Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion
    Murashkin, Maxim
    Sabirov, Ilchat
    Prosvirnin, Dmitriy
    Ovid'ko, Ilya
    Terentiev, Vladimir
    Valiev, Ruslan
    Dobatkin, Sergey
    METALS, 2015, 5 (02) : 578 - 590
  • [22] The processing of ultrafine-grained materials using high-pressure torsion
    Xu, Cheng
    Horita, Zenji
    Langdon, Terence G.
    RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 1283 - +
  • [23] Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion
    An, X. H.
    Lin, Q. Y.
    Wu, S. D.
    Zhang, Z. F.
    Figueiredo, R. B.
    Gao, N.
    Langdon, T. G.
    SCRIPTA MATERIALIA, 2011, 64 (03) : 249 - 252
  • [24] Age Hardening in Ultrafine-Grained Al-2 Pct Fe Alloy Processed by High-Pressure Torsion
    Cubero-Sesin, Jorge M.
    Horita, Zenji
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (06): : 2614 - 2624
  • [25] Ultrafine-grained AZ61 alloy produced by high-pressure torsion: Advent of superplasticity and effect of anisotropy
    Masuda, Takahiro
    Tang, Yongpeng
    Mohamed, Intan Fadhlina
    Horita, Zenji
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 879
  • [26] In vitroandin vivostudies on ultrafine-grained biodegradable pure Mg, Mg-Ca alloy and Mg-Sr alloy processed by high-pressure torsion
    Li, Wenting
    Liu, Xiao
    Zheng, Yufeng
    Wang, Wenhao
    Qiao, Wei
    Yeung, Kelvin W. K.
    Cheung, Kenneth M. C.
    Guan, Shaokang
    Kulyasova, Olga B.
    Valiev, R. Z.
    BIOMATERIALS SCIENCE, 2020, 8 (18) : 5071 - 5087
  • [27] Hydrogen Embrittlement of Ultrafine-grained Austenitic Stainless Steels Processed by High-pressure Torsion at Moderate Temperature
    Mine, Yoji
    Haraguchi, Daisuke
    Ideguchi, Takahiro
    Horita, Nobuaki
    Horita, Zenji
    Takashima, Kazuki
    ISIJ INTERNATIONAL, 2016, 56 (06) : 1083 - 1090
  • [28] Critical Temperature in Bulk Ultrafine-Grained Superconductors of Nb, V, and Ta Processed by High-Pressure Torsion
    Nishizaki, Terukazu
    Edalati, Kaveh
    Lee, Seungwon
    Horita, Zenji
    Akune, Tadahiro
    Nojima, Tsutomu
    Iguchi, Satoshi
    Sasaki, Takahiko
    MATERIALS TRANSACTIONS, 2019, 60 (07) : 1367 - 1376
  • [29] Low-Temperature and High-Strain-Rate Superplasticity of Ultrafine-Grained A7075 Processed by High-Pressure Torsion
    Lee, Seungwon
    Watanabe, Katsumi
    Matsuda, Kenji
    Horita, Zenji
    MATERIALS TRANSACTIONS, 2018, 59 (08) : 1341 - 1347
  • [30] A Review of Ultrafine-Grained Magnetic Materials Prepared by Using High-Pressure Torsion Method
    Wang, Zhi-Rui
    Si, Ping-Zhan
    Park, Jihoon
    Choi, Chul-Jin
    Ge, Hong-Liang
    MATERIALS, 2022, 15 (06)