Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices

被引:17
|
作者
Chen, Hui [1 ,2 ]
Guo, Liang [1 ]
Zhu, Wenbo [1 ,2 ]
Li, Chunlai [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-material; 3D printing; functional ceramic devices; capacitors; multilayer substrates; microstrip antennas; GRAIN-SIZE; RHEOLOGICAL PROPERTIES; DIELECTRIC-PROPERTIES; HIGH-RESOLUTION; INK; FABRICATION; SUSPENSIONS; DEPOSITION; FILM; THIN;
D O I
10.3390/polym14214635
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In recent years, functional ceramic devices have become smaller, thinner, more refined, and highly integrated, which makes it difficult to realize their rapid prototyping and low-cost manufacturing using traditional processing. As an emerging technology, multi-material 3D printing offers increased complexity and greater freedom in the design of functional ceramic devices because of its unique ability to directly construct arbitrary 3D parts that incorporate multiple material constituents without an intricate process or expensive tools. Here, the latest advances in multi-material 3D printing methods are reviewed, providing a comprehensive study on 3D-printable functional ceramic materials and processes for various functional ceramic devices, including capacitors, multilayer substrates, and microstrip antennas. Furthermore, the key challenges and prospects of multi-material 3D-printed functional ceramic devices are identified, and future directions are discussed.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Advances for 3D printing: Remote control system and multi-material solutions
    Luque Luque, Adrian
    Jurado Rodriguez, Juan Manuel
    Cardenas Donoso, Jose Luis
    Feito Higueruela, Francisco R.
    26. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2018), 2018, 2802 : 160 - 163
  • [2] Multi-material and Multi-dimensional 3D Printing for Biomedical Materials and Devices
    Jia An
    Kah Fai Leong
    Biomedical Materials & Devices, 2023, 1 (1): : 38 - 48
  • [3] Multi-material ceramic material extrusion 3D printing with granulated injection molding feedstocks
    Wick-Joliat, Rene
    Schroffenegger, Martina
    Penner, Dirk
    CERAMICS INTERNATIONAL, 2023, 49 (04) : 6361 - 6367
  • [4] Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting
    Hayes, Brandon
    Hainsworth, Travis
    MacCurdy, Robert
    ADDITIVE MANUFACTURING, 2022, 55
  • [5] Pneumatic Microvalves Fabricated by Multi-material 3D Printing
    Jiang, Xue
    Lillehoj, Peter B.
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017, : 38 - 41
  • [6] Multi-Material 3D and 4D Printing: A Survey
    Rafiee, Mohammad
    Farahani, Rouhollah D.
    Therriault, Daniel
    ADVANCED SCIENCE, 2020, 7 (12)
  • [7] A Review on Recent Advances in Piezoelectric Ceramic 3D Printing
    Park, Jiwon
    Lee, Dong-Gyu
    Hur, Sunghoon
    Baik, Jeong Min
    Kim, Hyun Soo
    Song, Hyun-Cheol
    ACTUATORS, 2023, 12 (04)
  • [8] MultiFab: A Machine Vision Assisted Platform for Multi-material 3D Printing
    Sitthi-Amorn, Pitchaya
    Ramos, Javier E.
    Wang, Yuwang
    Kwan, Joyce
    Lan, Justin
    Wang, Wenshou
    Matusik, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [9] Omnidirectional and Multi-Material In Situ 3D Printing Using Acoustic Levitation
    Chen, Hongyi
    Bansal, Shubhi
    Plasencia, Diego Martinez
    Di-Silvio, Lucy
    Huang, Jie
    Subramanian, Sriram
    Hirayama, Ryuji
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [10] Recent Advances in 3D Printing of Biomedical Sensing Devices
    Ali, Md Azahar
    Hu, Chunshan
    Yttri, Eric A.
    Panat, Rahul
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)