Finding the radical of an algebra of linear transformations

被引:23
作者
Cohen, AM
Ivanyos, G
Wales, DB
机构
[1] HUNGARIAN ACAD SCI,INFORMAT RES LAB,INST COMP & AUTOMAT,H-1111 BUDAPEST,HUNGARY
[2] CALTECH,SLOANE LAB,PASADENA,CA 91125
关键词
D O I
10.1016/S0022-4049(97)00010-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method that reduces the problem of computing the radical of a matrix algebra over an arbitrary field to solving systems of semilinear equations, The complexity of the algorithm, measured in the number of arithmetic operations and the total number of the coefficients passed to an oracle for solving semilinear equations, is polynomial, As an application of the technique we present a simple test for isomorphism of semisimple modules. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:177 / 193
页数:17
相关论文
共 15 条
  • [1] Amitsur S.A., 1980, LINEAR MULTILINEAR A, V8, P177, DOI 10.1080/03081088008817315
  • [2] Bini D., 1994, POLYNOMIAL MATRIX CO, V1
  • [3] COHEN AM, 1996, COMPUT PHYSICS COMM, V989, P1
  • [4] Curtis C. W., 1988, REPRESENTATION THEOR
  • [5] DICKSON LE, 1923, ALGEBRAS THEIR ARITH
  • [6] EBERLY W, 1989, THESIS U TORONTO DEP
  • [7] EBERLY WM, 1991, COMPUT COMPLEX, V1, P179
  • [8] FROHLICH A, 1955, PHILOS T R SOC A, V248, P407
  • [9] DECOMPOSITION OF ALGEBRAS OVER F(Q)(X(1),...,X(M))
    IVANYOS, G
    RONYAI, L
    SZANTO, A
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1994, 5 (02) : 71 - 90
  • [10] LAZARD D, 1982, LECT NOTES COMPUT SC, V144, P40