Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces

被引:306
作者
Kim, Kun Joong [1 ]
Balaish, Moran [1 ]
Wadaguchi, Masaki [2 ]
Kong, Lingping [1 ]
Rupp, Jennifer L. M. [1 ,3 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] NGK SPARK PLUG CO LTD, 2808 Iwasaki, Komaki, Aichi 4858510, Japan
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
interfacial resistance; Li metal; oxide‐ based cathodes; solid state batteries; LITHIUM SECONDARY BATTERIES; GARNET-TYPE LI7LA3ZR2O12; THIN-FILM LITHIUM; CONDUCTING GLASS-CERAMICS; HIGH IONIC-CONDUCTIVITY; ENHANCED ELECTROCHEMICAL PERFORMANCE; GRAIN-BOUNDARY CONDUCTIVITY; CHARGE-TRANSFER RESISTANCE; ELECTRICAL ENERGY-STORAGE; TA-DOPED LI7LA3ZR2O12;
D O I
10.1002/aenm.202002689
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of new, safe, and reliable solid-electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech-historic evolution and rationally analyzing the transition from liquid-based Li-ion batteries (LIBs) to all-solid-state Li-metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide-based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide-based cathodes and a Li-metal anode, leading to limited performance for solid-state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.
引用
收藏
页数:63
相关论文
共 512 条
[91]   High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling [J].
Finsterbusch, Martin ;
Danner, Timo ;
Tsai, Chih-Long ;
Uhlenbruck, Sven ;
Latz, Arnulf ;
Guillon, Olivier .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (26) :22329-22339
[92]   Strain-Stabilized Ceramic-Sulfide Electrolytes [J].
Fitzhugh, William ;
Wu, Fan ;
Ye, Luhan ;
Su, Haoqing ;
Li, Xin .
SMALL, 2019, 15 (33)
[93]   Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Li, Yiju ;
Xu, Shaomao ;
Wen, Yang ;
Zhang, Lei ;
Wang, Chengwei ;
Pastel, Glenn ;
Dai, Jiaqi ;
Liu, Boyang ;
Xie, Hua ;
Yao, Yonggang ;
Wachsman, Eric D. ;
Hu, Liangbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1568-1575
[94]   Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface [J].
Fu, Kun ;
Gong, Yunhui ;
Liu, Boyang ;
Zhu, Yizhou ;
Xu, Shaomao ;
Yao, Yonggang ;
Luo, Wei ;
Wang, Chengwei ;
Lacey, Steven D. ;
Dai, Jiaqi ;
Chen, Yanan ;
Mo, Yifei ;
Wachsman, Eric ;
Hu, Liangbing .
SCIENCE ADVANCES, 2017, 3 (04)
[95]   Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site [J].
Gai, Jianli ;
Zhao, Erqing ;
Ma, Furui ;
Sun, Deye ;
Ma, Xiaodi ;
Jin, Yongcheng ;
Wu, Qingliu ;
Cui, Yongjie .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (04) :1673-1678
[96]   Instability of Lithium Garnets against Moisture. Structural Characterization and Dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12 [J].
Galven, Cyrille ;
Dittmer, Jens ;
Suard, Emmanuelle ;
Le Berre, Francoise ;
Crosnier-Lopez, Marie-Pierre .
CHEMISTRY OF MATERIALS, 2012, 24 (17) :3335-3345
[97]   Instability of the Lithium Garnet Li7La3Sn2O12: Li+/H+ Exchange and Structural Study [J].
Galven, Cyrille ;
Fourquet, Jean-Louis ;
Crosnier-Lopez, Marie-Pierre ;
Le Berre, Francoise .
CHEMISTRY OF MATERIALS, 2011, 23 (07) :1892-1900
[98]   Impedance based time-domain modeling of lithium-ion batteries: Part I [J].
Gantenbein, Sophia ;
Weiss, Michael ;
Ivers-Tiffee, Ellen .
JOURNAL OF POWER SOURCES, 2018, 379 :317-327
[99]   Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors [J].
Gao, Yirong ;
Nolan, Adelaide M. ;
Du, Peng ;
Wu, Yifan ;
Yang, Chao ;
Chen, Qianli ;
Mo, Yifei ;
Bo, Shou-Hang .
CHEMICAL REVIEWS, 2020, 120 (13) :5954-6008
[100]   Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries [J].
Gao, Yue ;
Zhao, Yuming ;
Li, Yuguang C. ;
Huang, Qingquan ;
Mallouk, Thomas E. ;
Wang, Donghai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) :15288-15291