GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe

被引:12
|
作者
Dear, Richard M. [1 ]
Mitchell, Cathryn N. [1 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
关键词
D O I
10.1029/2005RS003269
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[ 1] Measurements from the Global Positioning System (GPS) satellites provide a valuable source of information about the ionosphere in the form of integrations of electron concentration. The slant total electron content (TEC) through the ionosphere can be estimated for specific satellite-to-ground paths using the two GPS frequencies and knowledge of the dispersive properties of the ionosphere. However, these TEC values are in error because of the interfrequency biases of the satellites and receivers. In order to assess the accuracy of TEC in the ionospheric images, the determination of interfrequency biases must be studied. This paper addresses the determination of the magnitudes of these biases for individual GPS satellites paired with GPS receivers in Europe using the ionospheric imaging tool Multi-instrument Data Analysis System (MIDAS). This is done so that the accuracy of the TEC in the ionospheric images can be assessed. A simulation study was undertaken to verify the approach, then experimental results were compared with independent values of the biases calculated by the Center for Orbit Determination in Europe. Experimental results reveal that changes in the biases can be related directly to documented changes in receiver hardware. They allow an estimate of the receiver biases and hence the error in TEC estimation using GPS data.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Comparison of ionospheric total electron content from the Navy Navigation Satellite System and the GPS
    Ciraolo, L
    Spalla, P
    RADIO SCIENCE, 1997, 32 (03) : 1071 - 1080
  • [32] Calibration errors on experimental slant total electron content (TEC) determined with GPS
    L. Ciraolo
    F. Azpilicueta
    C. Brunini
    A. Meza
    S. M. Radicella
    Journal of Geodesy, 2007, 81 : 111 - 120
  • [33] Total electron content modelling over Malawi using GPS observations
    Suya, Robert Galatiya
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [34] RECONSTRUCTION OF IONOSPHERIC CRITICAL FREQUENCIES BASED ON THE TOTAL ELECTRON CONTENT OVER BULGARIA
    Bojilova, Rumiana
    Mukhtarov, Plamen
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (01): : 110 - 119
  • [35] Using Deep Learning to Map Ionospheric Total Electron Content over Brazil
    Silva, Andre
    Moraes, Alison
    Sousasantos, Jonas
    Maximo, Marcos
    Vani, Bruno
    Faria, Clodoaldo
    REMOTE SENSING, 2023, 15 (02)
  • [36] Physical mechanism of ionospheric total electron content perturbations over a seismoactive region
    Yu. Ya. Ruzhin
    V. M. Sorokin
    A. K. Yashchenko
    Geomagnetism and Aeronomy, 2014, 54 : 337 - 346
  • [37] Physical mechanism of ionospheric total electron content perturbations over a seismoactive region
    Ruzhin, Yu. Ya.
    Sorokin, V. M.
    Yashchenko, A. K.
    GEOMAGNETISM AND AERONOMY, 2014, 54 (03) : 337 - 346
  • [38] Total electron content - A key parameter in propagation: measurement and use in ionospheric imaging
    Kersley, L
    Malan, D
    Pryse, SE
    Cander, LR
    Bamford, RA
    Belehaki, A
    Leitinger, R
    Radicella, SM
    Mitchell, CN
    Spencer, PSJ
    ANNALS OF GEOPHYSICS, 2004, 47 (2-3) : 1067 - 1091
  • [39] GPS tomography of the ionospheric electron content with a correlation functional
    Ruffini, GL
    Flores, A
    Rius, A
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (01): : 143 - 153
  • [40] A New Frontier in Ionospheric Observations: GPS Total Electron Content Measurements From Ocean Buoys
    Azeem, Irfan
    Crowley, Geoff
    Forsythe, Victoriya V.
    Reynolds, Adam S.
    Stromberg, Erik M.
    Wilson, Gordon R.
    Kohler, Craig A.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2020, 18 (11):