Algorithmic clustering of music

被引:9
作者
Cilibrasi, R [1 ]
Vitányi, P [1 ]
de Wolf, R [1 ]
机构
[1] CWI, NL-1098 SJ Amsterdam, Netherlands
来源
PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON WEB DELIVERING OF MUSIC | 2004年
关键词
D O I
10.1109/WDM.2004.1358107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method for hierarchical music clustering, based on compression of strings that represent the music pieces. The method uses no background knowledge about music whatsoever: it is completely general and can, without change, be used in different areas like linguistic classification, literature, and genomics. Indeed, it can be used to simultaneously cluster objects from completely different domains, like with like. It is based on an ideal theory of the information content in individual objects (Kolmogorov complexity), information distance, and a universal similarity metric. The approximation to the universal similarity metric obtained using standard data compressors is called "normalized compression distance (NCD)." Experiments using our CompLearn software tool show that the method distinguishes between various musical genres and can even cluster pieces by composer.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 24 条
[1]  
BALL P, 2002, NATURE 0122
[2]   Language trees and zipping [J].
Benedetto, D ;
Caglioti, E ;
Loreto, V .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4
[3]   Chain letters & evolutionary histories [J].
Bennett, CH ;
Li, M ;
Ma, B .
SCIENTIFIC AMERICAN, 2003, 288 (06) :76-81
[4]   Information distance [J].
Bennett, CH ;
Gacs, P ;
Li, M ;
Vitanyi, FMB ;
Zurek, WH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1407-1423
[5]  
Berry V, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P287
[6]  
BURROWS M, 1994, 124 DIG EQ CORP PAL
[7]  
Chai W., 2001, P INT C ART INT
[8]  
CILIBRASI R, IN PRESS COMPUTER MU
[9]  
CILIBRASI R, CLUSTERING COMPRESSI
[10]  
Cormode G, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P197