A fixed point method for the p(.)-Laplacian

被引:10
作者
Dinca, George [1 ]
机构
[1] Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
SPACES;
D O I
10.1016/j.crma.2009.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological method, based on the fundamental properties of the Leray-Schauder degree, is used in proving the existence of a week solution in W(0)(1,p(.)) (Omega) to Dinchlet problem -div(vertical bar del u vertical bar(p(x)-2)del u) = f(x , u), x epsilon Omega, (P) u = 0, x epsilon partial derivative Omega. This method is an adaptation of that used by Dinca et al. [G. Dinca, P. Jebelean, Une methode de point fixe pour le p-laplacien, C. R. Acad. Sci. Paris, Ser. I 324 (1997) 165-168. [1], G. Dinca, P. Jebelean. J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Portugal. Math. 53 (3) (2001) 339-377. [2]] for Dirichlet problems with classical p-Laplacian (p(x) equivalent to p = const. > 1). To cite this article: G. Dinca, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:757 / 762
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 1979, COMMENT MATH HELV
[2]  
Dinca G, 1997, CR ACAD SCI I-MATH, V324, P165
[3]  
Dinca G., 2001, Port. Math., V58, P339
[4]   Boundary trace embedding theorems for variable exponent Sobolev spaces [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :1395-1412
[5]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[6]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446