Design Automation in Synthetic Biology

被引:50
|
作者
Appleton, Evan [1 ]
Madsen, Curtis [2 ,3 ]
Roehner, Nicholas [2 ,3 ]
Densmore, Douglas [2 ,3 ]
机构
[1] Harvard Univ, Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[2] Boston Univ, Biol Design Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
来源
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY | 2017年 / 9卷 / 04期
关键词
COMBINATORIAL DESIGN; MARKUP LANGUAGE; SYSTEMS; TOOL; DNA; OPTIMIZATION; SIMULATION; SELECTION; STANDARD; PLATFORM;
D O I
10.1101/cshperspect.a023978
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Technologies for design-build-test-learn automation and computational modelling across the synthetic biology workflow: a review
    Matzko, Richard
    Konur, Savas
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [2] Engineering genetic circuits: advancements in genetic design automation tools and standards for synthetic biology
    Buecherl, Lukas
    Myers, Chris J.
    CURRENT OPINION IN MICROBIOLOGY, 2022, 68
  • [3] Biofoundries: Bridging Automation and Biomanufacturing in Synthetic Biology
    Lee, Dae-Hee
    Kim, Haseong
    Sung, Bong-Hyun
    Cho, Byung Kwan
    Lee, Seung-Goo
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2023, 28 (06) : 892 - 904
  • [4] Computational design tools for synthetic biology
    Marchisio, Mario A.
    Stelling, Joerg
    CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (04) : 479 - 485
  • [5] Bayesian and Algebraic Strategies to Design in Synthetic Biology
    Araujo, Robyn P.
    Vittadello, Sean T.
    Stumpf, Michael P. H.
    PROCEEDINGS OF THE IEEE, 2022, 110 (05) : 675 - 687
  • [6] Designing Synthetic Biology
    Agapakis, Christina M.
    ACS SYNTHETIC BIOLOGY, 2014, 3 (03): : 121 - 128
  • [7] Bayesian design strategies for synthetic biology
    Barnes, Chris P.
    Silk, Daniel
    Stumpf, Michael P. H.
    INTERFACE FOCUS, 2011, 1 (06) : 895 - 908
  • [8] SynBioHub: A Standards-Enabled Design Repository for Synthetic Biology
    McLaughlin, James Alastair
    Myers, Chris J.
    Zundel, Zach
    Misirli, Goksel
    Zhang, Michael
    Ofiteru, Irina Dana
    Gani-Moreno, Angel
    Wipat, Anil
    ACS SYNTHETIC BIOLOGY, 2018, 7 (02): : 682 - 688
  • [9] Harnessing QbD, Programming Languages, and Automation for Reproducible Biology
    Sadowski, Michael I.
    Grant, Chris
    Fell, Tim S.
    TRENDS IN BIOTECHNOLOGY, 2016, 34 (03) : 214 - 227
  • [10] Proposed Data Model for the Next Version of the Synthetic Biology Open Language
    Roehner, Nicholas
    Oberortner, Ernst
    Pocock, Matthew
    Beal, Jacob
    Clancy, Kevin
    Madsen, Curtis
    Misirli, Goksel
    Wipat, Anil
    Sauro, Herbert
    Myers, Chris J.
    ACS SYNTHETIC BIOLOGY, 2015, 4 (01): : 57 - 71