STRONG SMOOTHING FOR THE NON-CUTOFF HOMOGENEOUS BOLTZMANN EQUATION FOR MAXWELLIAN MOLECULES WITH DEBYE-YUKAWA TYPE INTERACTION

被引:5
作者
Barbaroux, Jean-Marie [1 ]
Hundertmark, Dirk [2 ]
Ried, Tobias [2 ]
Vugalter, Semjon [2 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France
[2] Karlsruhe Inst Technol, Inst Anal, Englerstra 2, D-76131 Karlsruhe, Germany
关键词
Smoothing of weak solutions; non-cutoff homogeneous Boltzmann equation; Debye-Yukawa potential; Maxwellian molecules; REGULARITY; RANGE;
D O I
10.3934/krm.2017036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study weak solutions of the homogeneous Boltzmann equation for Maxwellian molecules with a logarithmic singularity of the collision kernel for grazing collisions. Even though in this situation the Boltzmann operator enjoys only a very weak coercivity estimate, it still leads to strong smoothing of weak solutions in accordance to the smoothing expected by an analogy with a logarithmic heat equation.
引用
收藏
页码:901 / 924
页数:24
相关论文
共 15 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[3]   INTERMOLECULAR FORCES OF INFINITE RANGE AND THE BOLTZMANN-EQUATION [J].
ARKERYD, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 77 (01) :11-21
[4]  
Barbaroux J.-M., ARCH RATION IN PRESS
[5]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[6]   A SIMPLE PROOF OF DENJOY-CARLEMAN THEOREM [J].
COHEN, PJ .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01) :26-&
[7]  
Desvillettes L., 2001, Riv. Mat. Univ. Parma, V6, P1
[8]  
Desvillettes L, 2009, T AM MATH SOC, V361, P1731
[9]  
Krantz S.G., 2002, BIRKHAUSER ADV TEXTS, DOI DOI 10.1007/978-0-8176-8134-0
[10]   On the spatially homogeneous Boltzmann equation [J].
Mischler, S ;
Wennberg, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (04) :467-501