OGT Regulates Hematopoietic Stem Cell Maintenance via PINK1-Dependent Mitophagy

被引:35
|
作者
Murakami, Koichi [1 ,2 ,3 ]
Kurotaki, Daisuke [4 ]
Kawase, Wataru [4 ]
Soma, Shunsuke [1 ]
Fukuchi, Yumi [1 ]
Kunimoto, Hiroyoshi [2 ]
Yoshimi, Ryusuke [2 ]
Koide, Shuhei [5 ,6 ]
Oshima, Motohiko [5 ,6 ]
Hishiki, Takako [7 ,8 ]
Hayakawa, Noriyo [7 ]
Matsuura, Tomomi [7 ]
Oda, Mayumi [9 ]
Yanagisawa, Kiichi [10 ]
Kobayashi, Hiroshi [10 ]
Haraguchi, Miho [10 ]
Atobe, Yoshitoshi [11 ]
Funakoshi, Kengo [11 ]
Iwama, Atsushi [5 ,6 ]
Takubo, Keiyo [10 ]
Okamoto, Shinichiro [1 ]
Tamura, Tomohiko [3 ,4 ]
Nakajima, Hideaki [2 ]
机构
[1] Keio Univ, Dept Internal Med, Div Hematol, Sch Med, Tokyo 1608582, Japan
[2] Yokohama City Univ, Dept Stem Cell & Immune Regulat, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan
[3] Yokohama City Univ, Adv Med Res Ctr, Yokohama, Kanagawa 2360004, Japan
[4] Yokohama City Univ, Dept Immunol, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan
[5] Chiba Univ, Grad Sch Med, Dept Cellular & Mol Med, Chiba 2608670, Japan
[6] Univ Tokyo, Ctr Stem Cell Biol & Regenerat Med, Inst Med Sci, Div Stem Cell & Mol Med, Tokyo 1088039, Japan
[7] Keio Univ, Clin & Translat Res Ctr, Sch Med, Tokyo 1608582, Japan
[8] Keio Univ, Dept Biochem, Sch Med, Tokyo 1608582, Japan
[9] Keio Univ, Dept Syst Med, Sch Med, Tokyo 1608582, Japan
[10] Natl Ctr Global Hlth & Med, Res Inst, Dept Stem Cell Biol, Tokyo 1628655, Japan
[11] Yokohama City Univ, Dept Neuroanat, Sch Med, Yokohama, Kanagawa 2360004, Japan
来源
CELL REPORTS | 2021年 / 34卷 / 01期
关键词
O-GLCNAC TRANSFERASE; DAMAGED MITOCHONDRIA; METABOLIC-REGULATION; TRANSCRIPTION FACTOR; SELF-RENEWAL; GLCNACYLATION; QUIESCENCE; AUTOPHAGY; PINK1; METHYLATION;
D O I
10.1016/j.celrep.2020.108579
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a unique enzyme introducing O-GlcNAc moiety on target proteins, and it critically regulates various cellular processes in diverse cell types. However, its roles in hematopoietic stem and progenitor cells (HSPCs) remain elusive. Here, using Ogt conditional knockout mice, we show that OGT is essential for HSPCs. Ogt is highly expressed in HSPCs, and its disruption induces rapid loss of HSPCs with increased reactive oxygen species and apoptosis. In particular, Ogtdeficient hematopoietic stem cells (HSCs) lose quiescence, cannot be maintained in vivo, and become vulnerable to regenerative and competitive stress. Interestingly, Ogt-deficient HSCs accumulate defective mitochondria due to impaired mitophagy with decreased key mitophagy regulator, Pink1, through dysregulation of H3K4me3. Furthermore, overexpression of PINK1 restores mitophagy and the number of Ogt-deficient HSCs. Collectively, our results reveal that OGT critically regulates maintenance and stress response of HSCs by ensuring mitochondrial quality through PINK1-dependent mitophagy.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    Vives-Bauza, Cristofol
    Zhou, Chun
    Huang, Yong
    Cui, Mei
    de Vries, Rosa L. A.
    Kim, Jiho
    May, Jessica
    Tocilescu, Maja Aleksandra
    Liu, Wencheng
    Ko, Han Seok
    Magrane, Jordi
    Moore, Darren J.
    Dawson, Valina L.
    Grailhe, Regis
    Dawson, Ted M.
    Li, Chenjian
    Tieu, Kim
    Przedborski, Serge
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (01) : 378 - 383
  • [2] Short Mitochondrial ARF Triggers Parkin/PINK1-dependent Mitophagy
    Grenier, Karl
    Kontogiannea, Maria
    Fon, Edward A.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (43) : 29519 - 29530
  • [3] Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells
    Jin, Guoxiang
    Xu, Chuan
    Zhang, Xian
    Long, Jie
    Rezaeian, Abdol Hossein
    Liu, Chunfang
    Furth, Mark E.
    Kridel, Steven
    Pasche, Boris
    Bian, Xiu-Wu
    Lin, Hui-Kuan
    NATURE IMMUNOLOGY, 2018, 19 (01) : 29 - +
  • [4] Inhibition of bioenergetics provides novel insights into recruitment of PINK1-dependent neuronal mitophagy
    Shin, Yea Seul
    Ryall, James G.
    Britto, Joanne M.
    Lau, Chew L.
    Devenish, Rodney J.
    Nagley, Phillip
    Beart, Philip M.
    JOURNAL OF NEUROCHEMISTRY, 2019, 149 (02) : 269 - 283
  • [5] Parkin- and PINK1-dependent mitophagy in neurons: will the real pathway please stand up?
    Grenier, Karl
    McLelland, Gian-Luca
    Fon, Edward A.
    FRONTIERS IN NEUROLOGY, 2013, 4
  • [6] Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria
    Xiao, Bin
    Deng, Xiao
    Lim, Grace G. Y.
    Xie, Shaoping
    Zhou, Zhi Dong
    Lim, Kah-Leong
    Tan, Eng-King
    CELL DEATH & DISEASE, 2017, 8 : e3097 - e3097
  • [7] PINK1-Dependent Mitophagy Regulates the Migration and Homing of Multiple Myeloma Cells via the MOB1B-Mediated Hippo-YAP/TAZ Pathway
    Fan, Shengjun
    Price, Trevor
    Huang, Wei
    Plue, Michelle
    Warren, Jonathan
    Sundaramoorthy, Pasupathi
    Paul, Barry
    Feinberg, Daniel
    MacIver, Nancie
    Chao, Nelson
    Sipkins, Dorothy
    Kang, Yubin
    ADVANCED SCIENCE, 2020, 7 (05)
  • [8] Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent Mitophagy Signaling in Neonatal Cardiomyocytes
    Xu, Ran
    Kang, Le
    Wei, Siang
    Yang, Chunjie
    Fu, Yuanfeng
    Ding, Zhiwen
    Zou, Yunzeng
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [9] Vps13D functions in a Pink1-dependent and Parkin-independent mitophagy pathway
    Shen, James L.
    Fortier, Tina M.
    Wang, Ruoxi
    Baehrecke, Eric H.
    JOURNAL OF CELL BIOLOGY, 2021, 220 (11):
  • [10] PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion
    Rakovic, Aleksandar
    Ziegler, Jonathan
    Martensson, Christoph U.
    Prasuhn, Jannik
    Shurkewitsch, Katharina
    Koenig, Peter
    Paulson, Henry L.
    Klein, Christine
    CELL DEATH AND DIFFERENTIATION, 2019, 26 (08): : 1428 - 1441