Deformations of Calabi-Yau hypersurfaces arising from deformations of toric varieties

被引:8
作者
Mavlyutov, AR [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
D O I
10.1007/s00222-004-0362-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One can deform the complex structure of Calabi-Yau hypersurfaces in toric varieties by changing the coefficients of the defining polynomial. However, there must also exist non-polynomial deformations of the Calabi-Yau hypersurfaces which cannot be realized inside the ambient toric variety. In this paper, we have constructed the missing non-polynomial deformations, which are induced by an automorphism on the open part of the ambient toric variety.
引用
收藏
页码:621 / 633
页数:13
相关论文
共 23 条
  • [1] The versal deformation of an isolated toric Gorenstein singularity
    Altmann, K
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (03) : 443 - 479
  • [2] Artin M., 1976, DEFORMATIONS SINGULA
  • [3] Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
  • [4] ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES
    BATYREV, VV
    COX, DA
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 293 - 338
  • [5] MIRROR SYMMETRY FOR 2-PARAMETER MODELS .1.
    CANDELAS, P
    DELAOSSA, X
    FONT, A
    KATZ, S
    MORRISON, DR
    [J]. NUCLEAR PHYSICS B, 1994, 416 (02) : 481 - 538
  • [6] Cox D., 1999, MATH SURV MONOGR, V68
  • [7] COX D, 1995, P S PURE MATH 2, V62, P389
  • [8] Cox D. A., 1995, J. Algebraic Geom., V4, P17
  • [9] Danilov V.I., 1978, Uspekhi Mat. Nauk, V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
  • [10] Demazure M., 1970, ANN SCI ECOLE NORM S, V3, P507