Assessing predawn leaf water potential based on hyperspectral data and pigment's concentration of Vitis vinifera L. in the Douro Wine Region

被引:17
作者
Tosin, Renan [1 ,2 ]
Pocas, Isabel [1 ,3 ]
Novo, Helena [1 ]
Teixeira, Jorge [1 ,4 ,5 ]
Fontes, Natacha [6 ]
Graca, Antonio [6 ]
Cunha, Mario [1 ,2 ,3 ]
机构
[1] Univ Porto, Fac Ciencias, Rua Campo Alegre, P-4169007 Porto, Portugal
[2] Inst Syst & Comp Engn Technol & Sci INESC TEC, Campus Fac Engn Univ Porto,Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] CICGE, Geospace Sci Res Ctr, Rua Campo Alegre, P-4169007 Porto, Portugal
[4] Univ Porto, Fac Ciencias, BioISI BioSyst & Integrat Sci Inst, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[5] Univ Porto, Fac Ciencias, Dept Biol, GreenUPorto Sustainable Agrifood Prod, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[6] Sogrape Vinhos SA, Rua 5 Outubro,4527, P-44308522 Avintes, Portugal
关键词
Grapevine; Reflectance; Biostatistics; Canopy; Chlorophyll; CHLOROPHYLL CONTENT; DEFICIT IRRIGATION; OPTICAL-PROPERTIES; REMOTE ESTIMATION; REFLECTANCE; GRAPEVINE; INDEX; ABSORPTION; NITROGEN; PRODUCTIVITY;
D O I
10.1016/j.scienta.2020.109860
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Predawn leaf water potential (Psi(pd)) is widely used to assess plant water status. Also, pigments concentration work as proxy of canopy's water status. Spectral data methods have been applied to monitor and assess crop's biophysical variables. This work developed two models to estimate Psi(pd) using a hand-held spectroradiometer (400-1010 nm) to obtain canopy and foliar reflectance in four dates of 2018 and a pressure chamber to measure Psi(pd). Two modelling approaches, combining spectral data and several machine learning algorithms (MLA), were used to estimate Psi(pd) in a commercial vineyard in the Douro Wine Region. The first approach estimated Psi(pd) through vine's canopy reflectance; several vegetation indices (VIs) were computed and selected, namely the SPVi(opt)(1_)(950;596;521;) SPVIopt2_896;880;901; PRI_CI2(opt_539;560,573;716 )and NPCIopt_983;972, as well as a time-dynamic variable based on Psi(pd) (Psi(pd)_(0)). The second modelling approach is based on pigments' concentrations; several VIs were optimized for non-correlated pigments of vine's leaves, assessed by its hyperspectral reflectance. The following variables for Psi(pd) estimation were selected through stepwise forward method: Psi(pd)_(0); NRIgreen_LUT520;532; NRIgreen_LWC540;551. The B-MARS algorithm performed the best results for both modelling approaches, presenting a RRMSE in both validation modelling approaches between 13-14%.
引用
收藏
页数:9
相关论文
共 64 条
  • [1] European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties
    Abdullah, Haidi
    Darvishzadeh, Roshanak
    Skidmore, Andrew K.
    Groen, Thomas A.
    Heurich, Marco
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 64 : 199 - 209
  • [2] [Anonymous], 2017, Potential Support with the Cap 2014-2020
  • [3] Effects of irrigation and collection period on grapevine leaf (Vitis vinifera L. var. Touriga Nacional): Evaluation of the phytochemical composition and antioxidant properties
    Barreales, David
    Malheiro, Ricardo
    Pereira, Jose Alberto
    Verdial, Joao
    Bento, Albino
    Antonio Casquero, Pedro
    Ribeiro, Antonio Castro
    [J]. SCIENTIA HORTICULTURAE, 2019, 245 : 74 - 81
  • [4] Spatial modelling with Euclidean distance fields and machine learning
    Behrens, T.
    Schmidt, K.
    Rossel, R. A. Viscarra
    Gries, P.
    Scholten, T.
    MacMillan, R. A.
    [J]. EUROPEAN JOURNAL OF SOIL SCIENCE, 2018, 69 (05) : 757 - 770
  • [5] Hyperspectral remote sensing of plant pigments
    Blackburn, George Alan
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (04) : 855 - 867
  • [6] Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties
    Boso, Susana
    Alonso-Villaverde, Virginia
    Gago, Pilar
    Santiago, Jose L.
    Martinez, Maria C.
    [J]. CROP PROTECTION, 2014, 63 : 26 - 35
  • [7] Spectrophotometric measurement of carotenes, xanthophylls, and chlorophylls in extracts from plant seeds
    Bulda, O. V.
    Rassadina, V. V.
    Alekseichuk, H. N.
    Laman, N. A.
    [J]. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2008, 55 (04) : 544 - 551
  • [8] Grapevine under deficit irrigation: hints from physiological and molecular data
    Chaves, M. M.
    Zarrouk, O.
    Francisco, R.
    Costa, J. M.
    Santos, T.
    Regalado, A. P.
    Rodrigues, M. L.
    Lopes, C. M.
    [J]. ANNALS OF BOTANY, 2010, 105 (05) : 661 - 676
  • [9] Detection of peanut leaf spots disease using canopy hyperspectral reflectance
    Chen, Tingting
    Zhang, Jialei
    Chen, Yong
    Wan, Shubo
    Zhang, Lei
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 156 : 677 - 683
  • [10] Quantification of plant chlorophyll content using Google Glass
    Cortazar, Bingen
    Koydemir, Hatice Ceylan
    Tseng, Derek
    Feng, Steve
    Ozcan, Aydogan
    [J]. LAB ON A CHIP, 2015, 15 (07) : 1708 - 1716