Diophantine m-tuples in finite fields and modular forms

被引:28
作者
Dujella, Andrej [1 ]
Kazalicki, Matija [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Diophantine m-tuples; Modular forms; Finite fields; Elliptic curves; ATKIN;
D O I
10.1007/s40993-020-00232-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime p, a Diophantine m-tuple in F-p is a set of m nonzero elements of F-p with the property that the product of any two of its distinct elements is one less than a square. In this paper, we present formulas for the number N-(m)(p) of Diophantine m-tuples in F-p for m = 2,3 and 4. Fourier coefficients of certain modular forms appear in the formula for the number of Diophantine quadruples. We prove that asymptotically N-(m)(p) = 1/2((m)(2))p(m)/m! + o(p(m)), and also show that if p > 2(2m-2)m(2), then there is at least one Diophantine m-tuple in F-p.
引用
收藏
页数:24
相关论文
共 22 条
[1]   On Atkin and Swinnerton-Dyer congruence relations (2) [J].
Atkin, A. O. L. ;
Li, Wen-Ching Winnie ;
Long, Ling .
MATHEMATISCHE ANNALEN, 2008, 340 (02) :335-358
[2]   A criterion to rule out torsion groups for elliptic curves over number fields [J].
Bruin P. ;
Najman F. .
Research in Number Theory, 2 (1)
[3]  
Deligne P., 1977, COHOMOLOGIE ETALE, V569
[4]  
Dujella A, 1997, ACTA ARITH, V81, P69
[5]  
Dujella A, 2004, J REINE ANGEW MATH, V566, P183
[6]  
Dujella A., 2017, Number Theory-Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday, P227
[7]  
Dujella A., 2016, Notices Amer. Math. Soc, V63, P772
[8]   There Are Infinitely Many Rational Diophantine Sextuples [J].
Dujella, Andrej ;
Kazalicki, Matija ;
Mikic, Miljen ;
Szikszai, Marton .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (02) :490-508
[9]  
Gibbs P. E, 2016, PREPRINT
[10]   THERE IS NO DIOPHANTINE QUINTUPLE [J].
He, Bo ;
Togbe, Alain ;
Ziegler, Volker .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (09) :6665-6709