On the structure of cyclic codes over the ring Z2s[u]/⟨uk⟩

被引:5
作者
Dinh, Hai Q. [1 ,2 ,3 ]
Singh, Abhay Kumar [4 ]
Kumar, Pratyush [4 ]
Sriboonchitta, Songsak [5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
[4] Indian Inst Technol ISM, Dept Appl Math, Dhanbad 826004, Bihar, India
[5] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
关键词
Cyclic codes; Dual codes; Self-dual codes; Codes over rings; Chain rings; Local rings; SELF-DUAL CODES; Z(4); PREPARATA; KERDOCK;
D O I
10.1016/j.disc.2018.04.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider cyclic codes of odd length n over the local, non-chain ring R = Z(2s)[u]/< u(k)> = Z(2s) + uZ(2s) + ... + U(k-1)Z(2s) (u(k) = 0), for any integers s >= 1 and k >= 2. An explicit algebraic representation of such codes is obtained. This algebraic structure is then used to establish the duals of all cyclic codes. Among others, all self-dual cyclic codes of odd length n over the ring R are determined. Moreover, some examples are provided which produce several optimal codes. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2243 / 2275
页数:33
相关论文
共 16 条
[1]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[2]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[3]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[4]   Cyclic codes of odd length over Z4 [u] / ⟨uk⟩ [J].
Cao, Yuan ;
Li, Qingguo .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (05) :599-624
[5]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[6]   Self-dual codes over commutative Frobenius rings [J].
Dougherty, Steven T. ;
Kim, Jon-Lark ;
Kulosman, Hamid ;
Liu, Hongwei .
FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (01) :14-26
[7]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[8]  
McDonald Bernard R., 1974, PURE APPL MATH, V28
[9]  
Nechaev A.A., 1991, Discrete Mathematics and Applications, V1, P365, DOI [DOI 10.1515/DMA.1991.1.4.365, 10.1515/dma.1991.1.4.365]
[10]   On the structure of linear and cyclic codes over a finite chain ring [J].
Norton, GH ;
Salagean, A .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 10 (06) :489-506