Fixed points of local actions of nilpotent Lie groups on surfaces

被引:2
作者
Hirsch, Morris W. [1 ,2 ]
机构
[1] Univ Wisconsin, Math Dept, Madison, WI 53706 USA
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
POINCARE-BENDIXSON THEOREM; COMPACT SURFACES; ANALYTIC ACTIONS; MANIFOLDS; ORBITS; PLANE; SETS;
D O I
10.1017/etds.2015.73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected nilpotent Lie group with a continuous local action on a real surface M, which might be non-compact or have non-empty boundary partial derivative M. The action need not be smooth. Let phi be the local flow on M induced by the action of some one-parameter subgroup. Assume K is a compact set of fixed points of phi and U is a neighborhood of K containing no other fixed points. THEOREM. If the Dold fixed-point index of phi(t)backslash U is non-zero for sufficiently small t > 0, then Fix(G) boolean AND K not equal empty set.
引用
收藏
页码:1238 / 1252
页数:15
相关论文
共 37 条
[1]  
[Anonymous], 1957, Memoirs American Math. Soc.
[2]  
[Anonymous], COMMENT MATH U CAROL
[3]  
Belliart M, 1997, MATH Z, V225, P453, DOI 10.1007/PL00004317
[4]  
Belliart M., 1996, PUBLICATIONS IRMA
[5]  
BOHR H, 1952, COLLECTED MATH WORKS, V2
[6]  
BONATTI C, 1992, BOL SOC BRAS MAT, V22, P215, DOI DOI 10.1007/BF01232943
[7]   The Poincar,-Bendixson Theorem: from Poincar, to the XXIst century [J].
Ciesielski, Krzysztof .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06) :2110-2128
[8]  
Dold A., 1972, LECT ALGEBRAIC TOPOL, V52
[9]  
Dold Albrecht., 1965, Topology, V4, P1, DOI DOI 10.1016/0040-9383(65)90044-3
[10]  
EPSTEIN DBA, 1979, P LOND MATH SOC, V38, P219