Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives

被引:534
作者
Heymans, Nicole
Podlubny, Igor
机构
[1] Tech Univ Kosice, BERG Fac, Kosice 04200, Slovakia
[2] Univ Libre Bruxelles, B-1050 Brussels, Belgium
关键词
D O I
10.1007/s00397-005-0043-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
On a series of examples from the field of viscoelasticity we demonstrate that it is possible to attribute physical meaning to initial conditions expressed in terms of Riemann-Liouville fractional derivatives, and that it is possible to obtain initial values for such initial conditions by appropriate measurements or observations.
引用
收藏
页码:765 / 771
页数:7
相关论文
共 14 条
[1]   ON THE ADMISSIBILITY CRITERIA FOR LINEAR VISCOELASTICITY KERNELS [J].
BERIS, AN ;
EDWARDS, BJ .
RHEOLOGICA ACTA, 1993, 32 (05) :505-510
[2]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[3]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[4]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426
[5]   Modelling "unusual" behaviour after strain reversal with hierarchical fractional models [J].
Heymans, N ;
Kitagawa, M .
RHEOLOGICA ACTA, 2004, 43 (04) :383-389
[6]   Hierarchical models for viscoelasticity: Dynamic behaviour in the linear range [J].
Heymans, N .
RHEOLOGICA ACTA, 1996, 35 (05) :508-519
[7]   FRACTAL RHEOLOGICAL MODELS AND FRACTIONAL DIFFERENTIAL-EQUATIONS FOR VISCOELASTIC BEHAVIOR [J].
HEYMANS, N ;
BAUWENS, JC .
RHEOLOGICA ACTA, 1994, 33 (03) :210-219
[8]   APPLICATIONS OF FRACTIONAL CALCULUS TO THE THEORY OF VISCOELASTICITY [J].
KOELLER, RC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02) :299-307
[9]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[10]  
Podlubny I., 2002, FRACTIONAL CALCULUS, V5, P367, DOI DOI 10.1016/j.sigpro.2014.05.026