Bounds on operator dimensions in 2D conformal field theories

被引:37
作者
Qualls, Joshua D. [1 ]
Shapere, Alfred D. [1 ]
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 05期
基金
美国国家科学基金会;
关键词
Field Theories in Lower Dimensions; Conformal and W Symmetry; AdS-CFT; Correspondence;
D O I
10.1007/JHEP05(2014)091
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We extend the work of Hellerman [1] to derive an upper bound on the conformal dimension Delta(2) of the next-to-lowest nontrival primary operator in unitary, modular-invariant two-dimensional conformal field theories without chiral primary operators, with total central charge c(tot) > 2. The bound we find is of the same form as found by Hellerman for Delta(1) : Delta(2) <= c(tot)/12 + O(1). We obtain a similar bound on the conformal dimension Delta(3), and present a method for deriving bounds on Delta(n) for any n, under slightly modified assumptions. For asymptotically large c(tot) and n less than or similar to exp(pi c/12), we show that Delta(n) <= c(tot)/12 + O(1). This implies an asymptotic lower bound of order exp(pi c(tot) /12) on the number of primary operators of dimension <= c(tot)/12 + O(1), in the large-c limit. In dual gravitational theories, this corresponds to a lower bound in the flat-space limit on the number of gravitational states without boundary excitations, of mass less than or equal to 1/4G(N) .
引用
收藏
页数:16
相关论文
共 30 条
  • [1] [Anonymous], arXiv
  • [2] The string landscape, black holes and gravity as the weakest force
    Arkani-Hamed, Nima
    Motl, Lubos
    Nicolis, Alberto
    Vafa, Cumrun
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06):
  • [3] BLACK-HOLE IN 3-DIMENSIONAL SPACETIME
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (13) : 1849 - 1851
  • [4] GEOMETRY OF THE 2+1 BLACK-HOLE
    BANADOS, M
    HENNEAUX, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (04): : 1506 - 1525
  • [5] Bashkirov D., ARXIV13108255
  • [6] N=4 Superconformal Bootstrap
    Beem, Christopher
    Rastelli, Leonardo
    van Rees, Balt C.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [7] Bohn G., 1996, BONNER MATH SCHRIFTE, V286, P1
  • [8] OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1986, 270 (02) : 186 - 204
  • [9] Conformal partial waves and the operator product expansion
    Dolan, FA
    Osborn, H
    [J]. NUCLEAR PHYSICS B, 2004, 678 (1-2) : 491 - 507
  • [10] Conformal four point functions and the operator product expansion
    Dolan, FA
    Osborn, H
    [J]. NUCLEAR PHYSICS B, 2001, 599 (1-2) : 459 - 496