Photodissociation rate constants for VUV processes of CF3Cl and CF2Cl2 in the upper atmosphere.: A MQDO study

被引:9
作者
Mayor, E [1 ]
Velasco, AM [1 ]
Martín, I [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Quim Fis, E-47005 Valladolid, Spain
关键词
D O I
10.1021/jp049718h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The availability of data concerning the upper atmosphere is essential for an understanding of both the change in solar activity and the different processes that have direct effects on the biosphere, in particular, those with harmful environmental consequences. The main goal of the present work is the theoretical analysis of the photodissociation of two chlorofluorocarbon (CFC) compounds that play an important role in the chemical and energetic balance of the upper atmosphere, CF3Cl and CF2Cl2. Given that the molecular absorption cross section is directly linked to a molecule's photodissociation rate, we have first calculated cross sections and then have used the achieved values to determine the mechanisms of the photofragmentation processes that CF3Cl and CF2Cl2 undergo at specific vacuum-UV (VUV) wavelengths that are present in the ionosphere. We have focused our study on the calculation of the kinetic rate constants for the processes that can give rise to cations upon photoabsorption, because they are difficult to determine experimentally. Through the analysis of the photodissociation rate constants, we have been able to make a comparative study of the dissociative behavior of CF3Cl and CF2Cl2 when these two CFC's undergo absorption within the VUV spectral region. The atmospheric photodissociation rate constants of CF3Cl and CF2Cl2 have been calculated with the Molecular-adapted Quantum Defect Orbital (MQDO) approach as a function of the altitude and at different solar zenith angles. Altitudes from 60 to 150 km, which fall within the D and E layers of the ionosphere, have been considered. No earlier data of this kind have been found in the literature.
引用
收藏
页码:5699 / 5703
页数:5
相关论文
共 34 条
[1]   CHEMICAL LASERS - COMPREHENSIVE LITERATURE SURVEY [J].
ARNOLD, SJ ;
ROJESKA, H .
APPLIED OPTICS, 1973, 12 (02) :169-182
[2]   Quantitative spectroscopic studies of the valence-shell electronic excitation of freons (CFCl3, CF2Cl2, CF3Cl, and CF4) in the VUV and soft X-ray regions [J].
Au, JW ;
Burton, GR ;
Brion, CE .
CHEMICAL PHYSICS, 1997, 221 (1-2) :151-168
[3]   VARIABLE ENERGY PHOTOELECTRON STUDY OF THE VALENCE LEVELS OF CF3F, CF3CL, CF3BR, CF3I COMPOUNDS BETWEEN 21-EV AND 200-EV PHOTON ENERGIES [J].
BOZEK, JD ;
BANCROFT, GM ;
CUTLER, JN ;
TAN, KH ;
YATES, BW ;
TSE, JS .
CHEMICAL PHYSICS, 1989, 132 (1-2) :257-270
[4]   Photoabsorption of nitrous oxide through Rydberg states in the bound and continuum spectral regions:: Main ionization channels [J].
Bustos, E ;
Velasco, AM ;
Martín, I ;
Lavín, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (01) :35-40
[5]   PHOTOELECTRON-SPECTROSCOPY OF THE FREON MOLECULES CF3CL, CF2CL2 AND CFCL3 USING SYNCHROTRON RADIATION FROM 41 TO 160 EV [J].
COOPER, G ;
ZHANG, WZ ;
BRION, CE ;
TAN, KH .
CHEMICAL PHYSICS, 1990, 145 (01) :117-129
[6]   Fragmentation of the valence electronic states of CF3Cl+ and CF3Br+ studied by threshold photoelectron-photoion coincidence spectroscopy [J].
Creasey, JC ;
Smith, DM ;
Tuckett, RP ;
Yoxall, KR ;
Codling, K ;
Hatherly, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (11) :4350-4360
[7]   SPECTRAL DISTRIBUTION OF ATOMIC OSCILLATOR STRENGTHS [J].
FANO, U ;
COOPER, JW .
REVIEWS OF MODERN PHYSICS, 1968, 40 (03) :441-+
[8]  
Finlayson-Pitts B. J., 2000, Chemistry of the Upper and Lower Atmosphere
[9]  
Kirby K., 1979, Atomic Data and Nuclear Data Tables, V23, P63, DOI 10.1016/0092-640X(79)90021-4
[10]   NEW PROCEDURE FOR GENERATING VALENCE AND RYDBERG ORBITALS .2. ATOMIC PHOTOIONIZATION CROSS-SECTIONS [J].
MARTIN, I ;
SIMONS, G .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (12) :4799-4803