Characterizations of the Upper Bound of Bakry-Emery Curvature

被引:0
作者
Wu, Bo [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Bakry-Emery curvature; Functional inequality; Diffusion process; Path space; LOGARITHMIC SOBOLEV INEQUALITIES; PATH SPACES; RICCI CURVATURE; MANIFOLDS;
D O I
10.1007/s12220-019-00222-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will present characterizations for the upper bound of the Bakry-Emery curvature on a Riemannian manifold by using functional inequalities on the path space. Moreover, characterizations for general lower and upper bounds of Ricci curvature are also given, which extends the recent results derived by Naber (Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces, arXiv:1306.6512v4) and Wang-Wu (Sci China Math 61:1407-1420, 2018). A crucial point of the present study is to use a symmetrization argument for the lower and upper bounds of Ricci curvature, and a localization technique.
引用
收藏
页码:3923 / 3947
页数:25
相关论文
共 50 条
[31]   DIFFERENTIAL ONE-FORMS ON DIRICHLET SPACES AND BAKRY-EMERY ESTIMATES ON METRIC GRAPHS [J].
Baudoin, Fabrice ;
Kelleher, Daniel J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) :3145-3178
[32]   SELF-IMPROVEMENT OF THE BAKRY-EMERY CONDITION AND WASSERSTEIN CONTRACTION OF THE HEAT FLOW IN RCD(K, ∞) METRIC MEASURE SPACES [J].
Savare, Giuseppe .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) :1641-1661
[33]   On the Bakry-Emery Condition, the Gradient Estimates and the Local-to-Global Property of RCD*(K, N) Metric Measure Spaces [J].
Ambrosio, Luigi ;
Mondino, Andrea ;
Savare, Giuseppe .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) :24-56
[34]   Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature [J].
Xiang-Dong Li .
Mathematische Annalen, 2012, 353 :403-437
[35]   DISCRETE BECKNER INEQUALITIES VIA THE BOCHNER-BAKRY-EMERY APPROACH FOR MARKOV CHAINS [J].
Juengel, Ansgar ;
Yue, Wen .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) :2238-2269
[36]   Topological regularity of spaces with an upper curvature bound [J].
Lytchak, Alexander ;
Nagano, Koichi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (01) :137-165
[37]   Convex entropy decay via the Bochner-Bakry-Emery approach [J].
Caputo, Pietro ;
Pra, Paolo Dai ;
Posta, Gustavo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :734-753
[38]   Entropy decay for interacting systems via the Bochner-Bakry-Emery approach [J].
Pra, Paolo Dai ;
Posta, Gustavo .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-21
[40]   Bakry-Émery curvature sharpness and curvature flow in finite weighted graphs: theory [J].
Cushing, David ;
Kamtue, Supanat ;
Liu, Shiping ;
Muench, Florentin ;
Peyerimhoff, Norbert ;
Snodgrass, Ben .
MANUSCRIPTA MATHEMATICA, 2025, 176 (01)