Characterizations of the Upper Bound of Bakry-Emery Curvature

被引:0
作者
Wu, Bo [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Bakry-Emery curvature; Functional inequality; Diffusion process; Path space; LOGARITHMIC SOBOLEV INEQUALITIES; PATH SPACES; RICCI CURVATURE; MANIFOLDS;
D O I
10.1007/s12220-019-00222-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will present characterizations for the upper bound of the Bakry-Emery curvature on a Riemannian manifold by using functional inequalities on the path space. Moreover, characterizations for general lower and upper bounds of Ricci curvature are also given, which extends the recent results derived by Naber (Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces, arXiv:1306.6512v4) and Wang-Wu (Sci China Math 61:1407-1420, 2018). A crucial point of the present study is to use a symmetrization argument for the lower and upper bounds of Ricci curvature, and a localization technique.
引用
收藏
页码:3923 / 3947
页数:25
相关论文
共 50 条
[21]   A Bakry-Emery criterion for self-interacting diffusions [J].
Benaim, Michel ;
Raimond, Olivier .
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 :19-+
[22]   SOBOLEV INEQUALITIES ON A WEIGHTED RIEMANNIAN MANIFOLD OF POSITIVE BAKRY-EMERY CURVATURE AND CONVEX BOUNDARY [J].
Ilias, Said ;
Shouman, Abdolhakim .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 294 (02) :423-451
[23]   The entropy method under curvature-dimension conditions in the spirit of Bakry-Emery in the discrete setting of Markov chains [J].
Weber, Frederic ;
Zacher, Rico .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (05)
[24]   Myers' type theorem with the Bakry-Emery Ricci tensor [J].
Wu, Jia-Yong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (04) :541-549
[25]   Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature [J].
Li, Xiang-Dong .
MATHEMATISCHE ANNALEN, 2012, 353 (02) :403-437
[26]   Bakry-Emery Conditions on Almost Smooth Metric Measure Spaces [J].
Honda, Shouhei .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2018, 6 (01) :129-145
[27]   Comparison Geometry for Integral Radial Bakry-emery Ricci Tensor Bounds [J].
Wu, Jia-Yong .
POTENTIAL ANALYSIS, 2023, 58 (01) :203-223
[28]   A Bakry-emery Almost Splitting Result With Applications to the Topology of Black Holes [J].
Galloway, Gregory J. ;
Khuri, Marcus A. ;
Woolgar, Eric .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) :2067-2101
[29]   Fundamental Groups of Spaces with Bakry-Emery Ricci Tensor Bounded Below [J].
Jaramillo, Maree .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) :1828-1858
[30]   A discrete log-Sobolev inequality under a Bakry-Emery type condition [J].
Johnson, Oliver .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04) :1952-1970