Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials

被引:17
|
作者
Coussement, J [1 ]
Kuijlaars, ABJ [1 ]
Van Assche, W [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
D O I
10.1088/0266-5611/18/3/325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a spectral transform for the finite relativistic Toda lattice (RTL) in generalized form. In the nonrelativistic case, Moser constructed a spectral transform from the spectral theory of symmetric Jacobi matrices. Here we use a non-symmetric generalized eigenvalue problem for a pair of bidiagonal matrices (L, M) to define the spectral transform for the RTL. The inverse spectral transform is described in terms of a terminating T-fraction. The generalized eigenvalues are constants of motion and the auxiliary spectral data have explicit time evolution. Using the connection with the theory of Laurent orthogonal polynomials, we study the long-time behaviour of the RTL. As in the case of the Toda lattice the matrix entries have asymptotic limits. We show that L tends to an upper Hessenberg matrix with the generalized eigenvalues sorted on the diagonal, while M tends to the identity matrix.
引用
收藏
页码:923 / 942
页数:20
相关论文
共 35 条
  • [1] Direct and inverse problems for the generalized relativistic Toda lattice and the connection with general orthogonal polynomials
    Gago-Alonso, A.
    Santiago-Moreno, L.
    Pineiro-Diaz, L. R.
    INVERSE PROBLEMS, 2008, 24 (02)
  • [2] An extension of the Toda lattice: a direct and inverse spectral transform connected with orthogonal rational functions
    Coussement, J
    Van Assche, W
    INVERSE PROBLEMS, 2004, 20 (01) : 297 - 318
  • [3] A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients
    Coussement, J
    Van Assche, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (15): : 3337 - 3366
  • [4] THE PERIODIC RELATIVISTIC TODA LATTICE - DIRECT AND INVERSE PROBLEM
    RAGNISCO, O
    BRUSCHI, M
    INVERSE PROBLEMS, 1989, 5 (03) : 389 - 405
  • [5] Orthogonal polynomials associated with an inverse quadratic spectral transform
    Alfaro, Manuel
    Pena, Ana
    Rezola, M. Luisa
    Marcellan, Francisco
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 888 - 900
  • [6] Orthogonal polynomials associated with an inverse quadratic spectral transform
    Alfaro, Manuel
    Peña, Ana
    Rezola, M. Luisa
    Marcellán, Francisco
    Computers and Mathematics with Applications, 2011, 61 (04): : 888 - 900
  • [7] Orthogonal polynomials and the finite Toda lattice
    Kasman, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (01) : 247 - 254
  • [8] Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair
    Cleonice F. Bracciali
    Jairo S. Silva
    A. Sri Ranga
    Acta Applicandae Mathematicae, 2019, 164 : 137 - 154
  • [9] Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair
    Bracciali, Cleonice F.
    Silva, Jairo S.
    Ranga, A. Sri
    ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 137 - 154
  • [10] Orthogonal Polynomials Associated with an Inverse Spectral Transform. The Cubic Case
    Sghaier, Mabrouk
    Khaled, Lamaa
    FILOMAT, 2017, 31 (08) : 2477 - 2497