Approximately Midconvex Set-Valued Functions

被引:0
作者
Mirmostafaee, Alireza Kamel [1 ]
Mahdavi, Mostafa [1 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Math Sci, Ctr Excellence Anal Algebra Struct, Dept Pure Math, Mashhad 91775, Iran
关键词
Set-valued mappings; superadditive map; midconvex map; HYERS-ULAM STABILITY; ADDITIVE MAPPINGS; NORMED SPACES; EQUATIONS; INCLUSIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will show that if F is a set-valued mapping which satisfies F(x)+F(y) subset of 2F ((x+y)/2) + K for some convex compact set K, then under some restrictions, there are maximal superaddifive and midconvex mappings which are K-subclose to F.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 26 条
[1]   On solutions of the Frechet functional equation [J].
Almira, Jose Maria ;
Lopez-Moreno, Antonio Jesus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) :1119-1133
[2]   Selections of set-valued maps satisfying a linear inclusion in a single variable [J].
Brzdek, Janusz ;
Popa, Dorian ;
Xu, Bing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) :324-330
[3]  
Cardinali T., 1993, Ann. Polon, Math., V58, P185
[4]  
Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
[5]  
Gajda Z., 1986, INT SCHRIFTENREIHE N, V5, P281
[6]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[7]  
Jung SM, 2010, B MALAYS MATH SCI SO, V33, P47
[8]   Stability of additive mappings in non-Archimedean fuzzy normed spaces [J].
Mirmostafaee, Alireza Kamel ;
Moslehian, Mohammad Sal .
FUZZY SETS AND SYSTEMS, 2009, 160 (11) :1643-1652
[9]   APPROXIMATELY ADDITIVE MAPPINGS IN NON-ARCHIMEDEAN NORMED SPACES [J].
Mirmostafaee, Alireza Kamel .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (02) :387-400
[10]   STABILITY OF FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN SPACES [J].
Moslehian, Mohammad Sal ;
Rassias, Themistocles M. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (02) :325-334