A New Algorithm for Mining Sequential Patterns

被引:2
作者
Zhang, Zhuo [1 ,2 ]
Zhang, Lu [3 ]
Zhong, Shaochun [4 ]
Guan, Jiwen [5 ]
机构
[1] De Montfort Univ, Software Technol Res Lab, Leicester LE1 9BH, Leics, England
[2] NENU, Inst Ideal Informat & Technol, Changchun 130024, Peoples R China
[3] Shenyang Televis Univ, Shenyang 110003, Peoples R China
[4] NorthEast Normal Univ, Software Sch, Changchun 130024, Peoples R China
[5] Queens Univ Belfast, Sch Comp Sci, Belfast BT7 1NN, Antrim, North Ireland
来源
FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS | 2008年
关键词
Sequential mining; frequent pattern; itemset;
D O I
10.1109/FSKD.2008.344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
AprioriAll and AprioriSome are very famous algorithms for mining sequential patterns, which are used to find motifs on a fixed min-support number In this paper, we contribute a new algorithm that can find all motifs on any min-support numbers.
引用
收藏
页码:625 / +
页数:2
相关论文
共 50 条
[31]   Incremental mining and re-mining of frequent patterns without storage of intermediate patterns [J].
Tseng, Fan-Chen .
2007 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2007, :538-542
[32]   Association rules mining algorithm [J].
Bhowmik, R .
Proceedings of the ISCA 20th International Conference on Computers and Their Applications, 2005, :86-90
[33]   Self-adaptive nonoverlapping sequential pattern mining [J].
Wang, Yuehua ;
Wu, Youxi ;
Li, Yan ;
Yao, Fang ;
Fournier-Viger, Philippe ;
Wu, Xindong .
APPLIED INTELLIGENCE, 2022, 52 (06) :6646-6661
[34]   Survey on High Utility Oriented Sequential Pattern Mining [J].
Parmar, Dhyanesh K. ;
Rathod, Yagnik A. ;
Patel, Mukesh M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2013, :398-404
[35]   Self-adaptive nonoverlapping sequential pattern mining [J].
Yuehua Wang ;
Youxi Wu ;
Yan Li ;
Fang Yao ;
Philippe Fournier-Viger ;
Xindong Wu .
Applied Intelligence, 2022, 52 :6646-6661
[36]   Frequent Patterns Mining in DNA Sequence [J].
Deng, Na ;
Chen, Xu ;
Li, Desheng ;
Xiong, Caiquan .
IEEE ACCESS, 2019, 7 :108400-108410
[37]   A Boolean Load-Matrix Based Frequent Pattern Mining Algorithm [J].
Sahoo, Anasuya ;
Senapati, Rajiv .
2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
[38]   TIME CONSTRAINTS EXTENSION ON FREQUENT SEQUENTIAL PATTERNS [J].
Ben Zakour, A. ;
Sistiaga, M. ;
Maabout, S. ;
Mosbah, M. .
KDIR 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2010, :281-287
[39]   A parallel algorithm for frequent itemset mining [J].
Li, L ;
Zhai, DH ;
Fan, J .
PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, :868-871
[40]   Improving algorithm Apriori for data mining [J].
Zhang, Zhuo ;
Zhang, Lu ;
Zhong, Shao-Chun ;
Guan, Jiwen .
COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 :17-22