Strong Convergence Results for the Asymptotic Behavior of the 3D-Shell Model

被引:4
作者
Chapelle, D. [1 ]
Collin, A. [1 ]
机构
[1] Inria Saclay Ile de France, Palaiseau, France
关键词
Shells; 3D-Shell model; Asymptotic analysis; SHELL-MODEL; ELEMENT;
D O I
10.1007/s10659-013-9452-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We revisit the asymptotic convergence properties-with respect to the thickness parameter-of the earlier-proposed 3D-shell model. This shell model is very attractive for engineering applications, in particular due to the possibility of directly using a general 3D constitutive law in the corresponding finite element formulations. We establish strong convergence results for the 3D-shell model in the two main types of asymptotic regimes, namely, bending- and membrane-dominated behavior. This is an important achievement, as it completely substantiates the asymptotic consistency of the 3D-shell model with 3D linearized isotropic elasticity.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 22 条
[1]  
Ahmad S., 1970, Int J Numer Methods Eng, V2, P419, DOI [DOI 10.1002/NME.1620020310, 10.1002/nme.1620020310]
[2]  
[Anonymous], ESAIM P
[3]  
[Anonymous], 1968, Theoretical Elasticity
[4]  
Auricchio F, 2004, ESAIM-MATH MODEL NUM, V38, P877, DOI 10.1051/m2an:2004042
[5]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[6]  
Bernadou M., 1996, Finite Element Methods for Thin Shell Problems
[7]  
Bischoff M, 2000, INT J SOLIDS STRUCT, V37, P6933, DOI 10.1016/S0020-7683(99)00321-2
[8]   3D-shell elements and their underlying mathematical model [J].
Chapelle, D ;
Ferent, A ;
Bathe, KJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (01) :105-142
[9]  
Chapelle D, 2000, INT J NUMER METH ENG, V48, P289, DOI 10.1002/(SICI)1097-0207(20000520)48:2<289::AID-NME897>3.0.CO
[10]  
2-8